Generation mechanism and features of propagation of the ULF planetary-scale electromagnetic wavy structures in the ionosphere

1Aburjania, GD, 2Lominadze, JG, 1Khantadze, AG, 1Kharshiladze, OA
1Tbilisi State University, Tbilisi, Georgia
2Georgian Space Agency, Tbilisi, Georgia
Kosm. nauka tehnol. 2004, 10 ;(5-6):062-081
https://doi.org/10.15407/knit2004.05.062
Publication Language: English
Abstract: 
We give some results of a theoretical investigation of the dynamics of generation and propagation of planetary (with the wavelengths of 1000 km and more) ultra-low frequency (ULF) electromagnetic wave structures in the dissipative ionosphere. It is established that inhomogeneity (latitude variation) of the geomagnetic field and the Earth's rotation generates fast and slow planetary ULF electromagnetic waves. The waves propagate along the parallels to the east as well as to the west. In E-region the fast waves have phase velocities from 2 to 20 km/s and frequencies from 0.1 to 100 mHz; the slow waves propagate with local winds velocities and have frequencies 1 – 100,«Hz. In F-region the fast ULF electromagnetic waves propagate with phase velocities from several ten to several hundred kilometres per second and their frequencies are in the range of 10 to 0.001 Hz. The slow mode is produced by the dynamo electric field, it represents the generalization of the ordinary Rossby type waves in the rotating ionosphere and is caused by the Hall effect in the E-layer. The fast disturbances are new modes, which are associated with oscillations of the ionospheric electrons frozen in the geomagnetic field and are connected with the large-scale internal vortical electric field generation in the ionosphere. The large-scale waves are weakly damped. The features and the parameters of the theoretically investigated electromagnetic wave structures agree with those of large-scale ULF midlatitude long-period oscillations and magnetoionospheric wave perturbations, observed experimentally in the ionosphere. It is established that because of relevance of the Coriolis and electromagnetic forces, generation of slow planetary electromagnetic waves at the fixed latitude in the ionosphere can give rise to the reverse of local wind structures and to the direction change of general ionospheric circulation. It is considered one more class of the waves, called as slow magnetohydrodynamic waves, on which inhomogeneity of the Coriolis and Ampere forces do not influence. These waves appear as an admixture of the slow Alfven and whistler type perturbations. The waves generate the geomagnetic field from several ten to several hundred nanotesla and more. Nonlinear interaction of the waves under consideration with the local ionospheric zonal shear winds is studied. It is established that planetary ULF electromagnetic waves, at their interaction with the local shear winds, can self-localize in the form of nonlinear solitary vortices moving along the latitude circles westward as well as eastward 
References: 
1. Aburjania G. D. Structural turbulences and diffusion of plasmas in the magnetic traps. Plasma Phys. Rep., 16, 70—76 (1990) [in Russian].
2. Aburjania G. D. Self-organization of acoustic-gravity vortices in the ionosphere before earthquake. Plasma Physics Report, 22, 954—959 (1996) [in Russian].
3. Aburjania G. D., Ivanov V. N., Kamenetz F. F. Dynamics of drift vortices in collision plasmas. Phys. Scripta, 35, 677—681 (1987) [in Russian].
4. Aburjania G. D., Jandieri G. V., Khantadze A. G. Self-organization of planetary electromagnetic waves in the E-region of the ionosphere. J. Atmos. Sol.-Terr. Phys., 65, 661—671 (2003).
5. Aburjania G. D., Machabeli G. Z. Generation of electromagnetic perturbations by acoustic waves in the ionosphere. J. Geophys. Res., 103 (A5), 9441—9447 (1998).
6. Al'perovich L. G., Drobzhev V. I., Krasnov V. M., et al. Results of simultaneous observations of geomagnetic variations and wave disturbances in the ionosphere. Radiofizika, 23, 763—765 (1980) [in Russian].
7. Al'perovich L. S., Drobgev V. I., Sorokin V. M., et al. On the midlatitude oscillations of the geomagnetic field and its connection to the dynamical processes in the ionosphere. Geomagn. Aeron., 22, 797—802 (1982) [in Russian].
8. Al'perovich L. S., Ponomarev E. A., Fedorovich G. V. Geophysical phenomena modeling by an explosion: a review. Izv. Phys. Solid Earth, 21, 816—825 (1985) [in Russian].
9. Bauer T. M., Baumjohann W., Treumann R. A., et al. Low-frequency waves in the near-Earth plasma sheet. J. Geophys. Res., 100A, 9605—9617 (1995).
10. Behnke R. A., Hogfors S. T. Evidence for the existence of night-time region polarization fields at Arecibo. Radio Sci., 9, 211—216 (1974).
11. Benney D. J. Long non-linear waves in fluid flows. J. Math. Phys., 45, 52—63 (1966).
12. Bostrom R. Dynamics of the Ionosphere. In: Cosmical Geophysics. (Universitetsforlaget, Oslo-Bergen-Tromso, 1973).
13. Cavalieri D. J. Traveling planetary-scale waves in the E-region. J. Atmos. Terr. Phys., 38, 965—978 (1976).
14. Cavalieri D. J., Deland R. J., Poterna J. A., Gavin R. F. The correlation of VLF propagation variations with atmospheric planetary-scale waves. J. Atmos. Terr. Phys., 36, 561—574 (1974).
15. Charney J. G., Drazin P. G. Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83—109 (1961).
16. Chmyrev V. M., Marchenko V. A., Pokhotelov O. A., et al. Vortex structures in the ionosphere and the magnetosphere of the Earth. Planet. Space Sci., 39, 1025—1030 (1991).
17. Cowling T. C. Magnetohydrodynamics. (Adam Higer Ltd., New York, 1975).
18. Dickinson R. E. Planetary Rossby wave propagating vertically through weak westerly wind wave guides. J. Atmos. Sci., 25, 984—1002 (1968).
https://doi.org/10.1175/1520-0469(1968)025<0984:PRWPVT>2.0.CO;2
19. Dickinson R. E. Theory of planetary wave-zonal flow interaction. J. Atmos. Sci., 26, 73—81 (1969).
https://doi.org/10.1175/1520-0469(1969)026<0073:TOPWZF>2.0.CO;2
20. Gershman B. I. Dynamics of the Ionospheric Plasma. (Nauka, Moscow, 1974) [in Russian].
21. Gill A. E. Atmosphere-Ocean Dynamics. (Academic Press, London, 1982).
22. Ginzburg V. L. Propagation of the Electromagnetic Waves in the Plasma. (Nauka, Moscow, 1967) [in Russian].
23. Gossard E., Hooke W. Waves in the Atmosphere. (Elsevier, Amsterdam, 1975).
24. Hajkowicz L. A. Global onset and propagation of large-scale travelling ionospheric disturbances as a result of the great storm of 13 March 1989. Planet. Space Sci., 39, 583—593 (1991).
25. Hayakawa M. (Ed.) Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, 996 p. (Terra Sci. Publ. Co., Tokyo, 1999).
26. Holton J. R. The Dynamic Meteorology of the Stratosphere and Mesosphere. (Amer. Meteor. Soc., Boston, 1975).
27. Jacchia L. G. Thermospheric temperature, density and composition: new models. Spec. Rep. Smithsonian astrophys. observ., No. 375, 1 — 106 (1977).
28. Kamide Y. Electrodynamic Processes in the Earth's Ionosphere and Magnetosphere. (Kyoto Sangyo Univ. Press, Kyoto, 1988).
29. Kelley M. C. The Earth's Ionosphere: Plasma Physics and Electrodynamics. (Academic Press, San Diego, 1989).
30. Khantadze A. G. Determination of the wind field by the pressure gradient field and latitudinal effect of geomagnetic field. Proc. Inst. Geophys. Acad. Sci. Georgian SSR, 24—29 (1967) [in Russian].
31. Khantadze A. G. On the Dynamics of Conductive Atmosphere. (Nauka, Tbilisi, 1973) [in Russian].
32. Kopitenko Yu. A., Komarovskikh M. I., Voronov I. M., Kopitenko E. A. Connection between ULF electromagnetic litospheric emission and extraordinary behavior of biological systems before the earthquake. Biofizika, 40, 1114—1119 (1995) [in Russian].
33. Krall N. A., Trivelpiece A. W. Principles of Plasma Physics. (McGraw-Hill Book Company, New York, 1973).
34. Larichev V. D., Reznik G. M. On the two-dimencional solitary Rossby waves. Dokl. Akad. Nauk SSSR, 231, 1077—1079 (1976) [in Russian].
35. Larichev V. D., Reznik G. M. Strong nonlinear two-dimensional solitary Rossby waves. Okeanologia, 16, 961 — 967 (1976) [in Russian].
36. Long R. Solitary waves in the westerlies. J. Atmos. Sci., 21, 197—200 (1964).
https://doi.org/10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2
37. Manson A. H., Heek C. E., Gregory J. B. Winds and waves (10 min — 30 day) in the mesosphere and lower thermosphere at Saskatoon. J. Geophys. Res., 86, 9615—9625 (1981).
38. Newel A. C. Solitons in Mathematics and Physics. (Society for Industrial and Applied Mathematics, Arizona, 1985). 
39. Nezlin M. V., Snezhkin E. N. Rossby Vortices, Spiral Structures, Solitons. (Springer-Verlag, Heidelberg, 1993).
40. Pedlosky J. Geophysical Fluid Dynamics. (Springer-Verlag, New York, 1978).
41. Petviashvili V. I., Pokhotelov O. A. Solitary Waves in Plasma and in the Atmosphere. (Gordon and Breach Science Publ., Reading, 1992).
42. Pokhotelov O. A., Parrot M., Pilipenko V. A., et al. Response of the ionosphere to natural and man-made acoustic sources. Ann. Geophys., 13, 1197—1210 (1995). 
43. Ratclife J. A., Weekes K. Physics of the Upper Atmosphere. (Academic Press, New York, 1960).
44. Redecopp L. On the theory of solitary Rossby waves. J. Fluid Mech., 82, 725—745 (1977). 
45. Rishbeth N. Superrotation of the upper atmosphere. Geophys. Space Phys., 10, 799—819 (1972).
46. Shaefer L. D., Rock D. R., Lewis J. P., et al. Detection of explosive events by monitoring acoustically-induced geomagnetic perturbations. (Lawrence Livermore National Laboratory, Livermore, CA, 1999).
47. Sharadze Z. S., Japaridze G. A., Kikvilashvili G. B., et al. Wavy disturbances of nonacoustical nature in the midlatitude ionosphere. Geomagn. Aeron., 28, 446—451 (1988) [in Russian].
48. Sharadze Z. S., Mosashvili N. V., Pushkova G. N., Yudovich L. A. Long-period-wave disturbances in E-region of the ionosphere. Geomag. Aeron., 29, 1032—1034 (1989) [in Russian].
49. Sorokin V. M. Wave processes in the ionosphere associated with geomagnetic field. Izv. Vuzov, Radiofizika, 31, 1169—1179 (1988) [in Russian].
50. Sorokin V. M., Fedorovich G. V. Physics of Slow MHD Waves in the Ionospheric Plasma. (Nauka, Moscow, 1982) [in Russian].
51. Tarpley J. D. The ionospheric wind dynamo. 2. Solar tides. Planet. Space Sci., 18, 1091 — 1103 (1970).
52. Thompson P. D. Numerical weather analysis and prediction. (The Macmillan Company, New York, 1961).
53. Tolstoy I. Hydromagnetic gradient waves in the ionosphere. J. Geophys. Res., 7, 1435—1442 (1967).
54. Whitham G. B. Linear and Nonlinear Waves. (John Wiley, New York, 1977).
55. Williams G. P., Yamagata T. Geostrophic regimes, intermediate solitary vortices and Jovian Eddies. J. Atmos. Sci., 41, 453—468 (1984).
https://doi.org/10.1175/1520-0469(1984)041<0453:GRISVA>2.0.CO;2
56. Zhou Q. H., Sulzer M. P., Tepley C. A. An analysis of tidal and planetary waves in the neutral winds and temperature observed at low-latitude E-region heights. J. Geophys. Res., 102, 491—505 (1997).