Actin of Beta vulgaris seedlings under the clinorotation

1Kozeko, LYe.
1M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2004, 10 ;(5-6):218-220
https://doi.org/10.15407/knit2004.05.218
Publication Language: Russian
Abstract: 
We study the influence of altered gravity on actin expression in roots of Beta vulgaris seedlings grown on the horizontal clinostat (2 rpm) from seed germination for three days. It is shown that the total actin quantity was not influenced. Three actin isoforms are revealed; a relative protein quantity of these isoforms was similar both in clinorotated seedlings and in ones grown in norm. This points to stable expression of actin under the altered gravity conditions.
References: 
1. Kordyum E. L., Sytnik K. M., Baranenko V. V., et al. Cellular mechanisms of plant adaptation to the adverse effects of environmental factors in vivo, 277 p. (Nauk. dumka, Kiev, 2003) [in Russian].
 
2. Bradford M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248—254 (1976).
 
3. Jones P. P. Analysis of radiolabeled lymphocyte proteins by one- and two-dimensional polyacrylamide gel electrophoresis. In: Michell B. B., Sniigi S. M. (Eds) Immunology, 398—440 (Freeman, S. F., 1980).
 
4. Kandasamy M. K., McKinney E. C., Meagher R. B. Functional nonequivalency of actin isovariants in Arabidopsis. Mol. Biol. of the Cell, 13, 251—261 (2002).
 
5. Kandasamy M. K., Meagher R. B. Actin-organelle interactions: association with chloroplast in Arabidopsis leaf mesophyll cells. Cell Motil. Cytoskeleton, 44, 110—118 (1999).
https://doi.org/10.1002/(SICI)1097-0169(199910)44:2<110::AID-CM3>3.0.CO;2-O
 
6. Kordyum E. L. A role for the cytoskeleton in plant cell gravisensitivity and Ca(2+)- signaling in microgravity. Cell Biol. Int., 27, 219—221 (2003).
 
7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227 (5259), 680 (1970).
 
8. Lichtenthaler H. K. The stress concept in plants: An introduction. In: Stress of life from molecules to man: Annals of the New York Academy of Sciences, 187—198 (New York, 1998).
 
9. McKinney E. C, Kandasamy M. K., Meagher R. B. Arabidopsis contains ancient classes of differentially expressed actin-related protein genes. Plant Physiol., 128, 997—1007 (2002).
 
10. McLean B. G., Huang S., McKinney E. C., Meagher R. B. Plants contain highly divergent actin isovariants. Cell Motil. Cytoskeleton, 17, 276—290 (1990).
 
11. Meagher R. B., McKinney E. C., Kandasamy M. K. Isovariant dynamics expand and buffer the responses of complex systems: the diverse plant actin gene family. Plant Cell, 11, 995—1005 (1999).
 
12. Schnabl H., Hunte C., Schulz M., et al. Effects of fast clinostat treatment and microgravity on Vicia faba L. mesophyll cell protoplast ubiquitin pools and actin isoforms. Microgravity Sci. Technol., 9 (4), 275—280 (1996).
 
13. Shevchenko G. V., Kordyum E. L. Orientation of root hair growth is influenced by simulated microgravity. In: Annu. Int. Gravit. Physiol. Meeting, 22-27 April, 2001, Budapest, Hungary (2001).
 
14. Sievers A. From gravitational to space biology in Bonn Newsletter ASGSB. Newsletter ASGSB, 16, 18—25 (2000).