Comparative parameters of airborne and spaceborne lidar monitoring technologies
Heading:
1Tikhomirov, AA 1Technological Design Institute of Scientific Instrument Engineering, Tomsk, Russia |
Kosm. nauka tehnol. 2002, 8 ;(1):023-031 |
https://doi.org/10.15407/knit2002.01.023 |
Publication Language: Russian |
Abstract: A number of parameters were suggested for comparing the potentialities of airborne and spaceborne lidar monitoring of the atmosphere, hydrosphere, and underlying surface. These parameters were grouped in accordance with the properties that are determined by: the characteristics of the carrier platform used; the lidar parameters; the characteristics of both lidar and carrier that simultaneously influence the monitoring parameters; the environment and background; the monitoring object; the information obtained and its preliminary processing; the operating characteristics and the cost of both the lidar and the carrier. On the basis of these parameters the qualitative comparative analysis of these two types of monitoring was carried out. Their merits and demerits were considered having in mind that both monitoring technologies correlate well.
|
Keywords: environment and background, LIDAR, monitoring |
References:
1. Abramochkin A. I., Zanin V. V., Penner I. E., et al. Airborne Polarization Lidars for Atmospheric and Hydrospheric Studies. Optika atmosfery i okeana, 1 (2), 92—96 (1988) [in Russian].
2. Balin Yu. S., Tikhomirov A. A. Remote laser sensing of the Earth from space. II. Methodological aspects of lidar measurements aboard an orbiting station. Kosm. nauka tehnol., 3 (1-2), 26—33 (1997) [in Russian].
3. Balin Yu. S., Tikhomirov A. A., Samoilova S. V. Preliminary results of sounding clouds and the underlying surface obtained with a spaceborne lidar "BALKAN". Optika atmosfery i okeana, 10 (3), 333—352 (1997) [in Russian].
4. Belan B. D. Airborne ecological sounding of the atmosphere. Optika atmosfery i okeana, 6 (2) 205—222 (1993) [in Russian].
5. Bondur V. G., Zubkov E. V. Lidar methods for remote sensing of pollution in the upper ocean layer. Optika atmosfery i okeana, 14 (2) 142— 155 (2001) [in Russian].
6. Cracknell A. P. (Ed.) Remote sensing in meteorology, oceanography and hydrology, Transl. from Eng., 535 p. (Mir, Moscow, 1984) [in Russian].
7. Zakharov V. M., Kostko O. K. Meteorological Laser Location, 222 p. (Gidrometeoizdat, Leningrad, 1977) [in Russian]
8. Zakharov V. M., Kostko O. K., Birich L. N., et al. Laser Sounding of Atmosphere from Cosmic Space, 216 p. (Gidrometeoizdat, Leningrad, 1988) [in Russian].
9. Zuev V. E., Balin Yu. S., Zuev V. V., et al. State of the art and prospects for the development of the BALKAN series spaceborne lidars. Optika atmosfery i okeana, 8 (12), 1718—1726 (1995) [in Russian].
10. Zuev V. E., Balin Yu. S., Tikhomirov A. A., et al. Remote laser sensing of the Earth from space. I. The russian spaceborne BALKAN lidar. Kosm. nauka tehnol., 3 (1-2), 16—25 (1997) [in Russian].
11. Kokhanenko G. P., Penner I. E., Shamanaev V. S. Lidar studies of maritime cloudiness. Optika atmosfery i okeana, 9 (10), 1399—1407 (1996) [in Russian].
12. Mezheris R. Laser remote sensing, 550 p. (Mir, Moscow, 1987) [in Russian].
13. Metodika P24586-117, Ch. 1, kn. 1, 48 p. (NPO «Jenergija», 1986) [in Russian].
14. Panchenko M. V., Belan B. D., Shamanaev V. S. Aircraft-laboratory of the IAO SB RAS in the study of the lake Baykal environment. Optika atmosfery i okeana, 10 (4-5), 463—472 (1997) [in Russian].
15. Penner I. E., Shamanaev V. S. Lidar Investigation of Clouds Top Height above Ocean. Optika atmosfery i okeana, 12 (12), 1146— 1151 (1999) [in Russian].
16. Samokhvalov I. V., Shamanaev V. S. Aircraft lidars and their application: Manuscript dep. in VINITI 29.03.88; No. 2403-V88, 38 p. (Moscow, 1988) [in Russian].
17. Tikhomirov A. A. Some results of the ranging of the ocean surface with the spase-based lidar BALKAN. Kosm. nauka tehnol., 5 (2-3), 22— 30 (1999) [in Russian].
18. Tikhomirov A. A., Beresnev A. V., Abramochkin A. A. Scanner based on rotating optical wedges and its capabilities in airborne lidar. Optika atmosfery i okeana, 13 (4), 407—414 (2000) [in Russian].
19. Tulinov G. F., Mel'nikov V. E., Zhidkova M. B., et al. Satellite lidar Alisa for space station Mir. Inzhenernaya Ekologia, No. 5, 80—91 (1996) [in Russian].
20. Reshetnev M. F., Lebedev A. A., Bartenev V. A., et al. Control and Navigation of Satellites on Near-Circular Orbits, 336 p. (Mashinostroenie, Moscow, 1988) [in Russian].
21. Bufton J. L., Hoge F. E., Swift R. N. Airborne measurements of laser backscatter from the ocean surface. Appl. Opt., 22 (17), 2603—2618 (1983).
https://doi.org/10.1364/AO.22.002603
https://doi.org/10.1364/AO.22.002603
22. Penny M. F., Abbot R. H., Phillips D. M., et al. Airborne laser gydrography in Australia. Appl. Opt., 25 (13), 2046—2058 (1983).
https://doi.org/10.1364/AO.25.002046
https://doi.org/10.1364/AO.25.002046
23. Werner Ch., Brand B., Joachim E. F. Doppler on the space station. Proc. SPIE, 2581, 148—162 (1995).
https://doi.org/10.1117/12.228513
https://doi.org/10.1117/12.228513
24. Winker D. M., McCormick M. P. Observation of aerosol and clouds with LITE // Proc. SPIE.—1995.—2581.—P. 70—78.