Calcium in gravitropism of the moss Pohlia nutans (Hedw.) Lindb. protonemata

1Khorkavtsiv, OYa., 1Demkiv, OT, 1Khorkavtsiv, Ya.D
1Institute of Ecology of the Carpathians of the National Academy of Sciences of Ukraine, L’viv, Ukraine
Kosm. nauka tehnol. 2002, 8 ;(1):089-095
https://doi.org/10.15407/knit2002.01.089
Publication Language: Ukrainian
Abstract: 
Protonemata of mosses both of Pohlia nutans grow by extension and division of single apical cells which are negatively gravitropic in darkness. The fluorescence of Ca2+ increased in the tip of apical cells from the first hours of gravitropism stimulation. Cytochemical investigations confirmed the existence of a well pronounced tip-to-base Ca2+-gradient, its formation being favoured by localization of calcium influx in the tip of the apical cell. Measurement of the cytochemical reaction intensity showed that the level of Ca2+-ATFase activity is low in apex and increases towards the base of the apical cell. The gravitropic protonemata and filaments which grew on the clinostat showed similar distributions of the Ca2+ and Ca2+-ATFase activity along the apical cell axis. Thus, these data demonstrate that growing apical cells of gravitropic protonemata have a high tip-to-base Ca2+ gradient, the Ca 2+ transport being afforded by Ca 2+-ATFase.
Keywords: apical cell, cytochemical investigations, protonemata
References: 
1. Belyavskaya N. A. The role of calcium ions in graviperceptive mechanism in plants and in microgravity effects at the cellular level: Doctors thesis, 367 p. (Manuscript) (Kiev, 1998) [in Russian].
2. Burston M. Histochemistry of Enzymes, 464 p. (Mir, Moscow, 1965) [in Russian].
3. Demkiv O. T., Sytnik K. M. Morphogenesis of Archegoniates, 204 p. (Naukova Dumka, Kiev, 1985) [in Russian].
4. Demkiv O. T., Kardash A. R., Khorkavtsiv Ya. D. Cell polarity, its formation and reorientation. In: Plant Growth and Resistance, Ed. by R. K. Salyaev, V. I. Kefeli, 29—45 (Nauka, Novosibirsk, 1988) [in Russian].
5. Demkiv O. T., Khorkavtsiv Ya. D., Kardash A. R. Polarity and cell differentiation in development of archegonial plants. In: Analiticheskie aspekty differenzirovki, 121 — 132 (Nauka, Moscow, 1991) [in Russian].
6. Demkiv O. T., Khorkavtsiv Ya. D., Kardash A. P., and Chaban Kh. I. Interactions between Light and Gravitation in Moss Protonema Tropisms. Fiziologiya Rastenii, 44 (2), 205—211 (1997) [in Russian].
7. Jensen W. A. Botanical histochemistry, 374 p. (Mir, Moscow, 1965) [in Russian].
8. Karimova F. G., Tarchevskaya O. I. Regulation of calcium concentration in cytosol of plant cells. Fiziologiya i Biokhimiya Kul'turnykh Rastenii, 22 (2), 107—118 (1990) [in Russian].
9. Mashinskij A. L., Mitichkin O. V., Grechko G. M. On the issue of assessing the weight of a biological study. In: Organisms and gravity, 228—237 (Vilnius, 1976) [in Russian].
10. Medvedev S. S. Physiological Basics of Plant Polarity, 159 p. (Kol’na, St.Petersburg, 1996) [in Russian].
11. Khorkavtsiv Ya. D., Demkiv O. T. Regulation of growth processes in isolated cellular systems of mosses. Physiol. and biochem. cult. plants, 25 (3), 284—295 (1993) [in Russian].
12. Chaban Kh. I. Contemporary ideas about the gravitropic reaction of plants. Ukr. botan. zhurn., 55 (4), 369— 376 (1998) [in Ukrainian].
13. Shevchenko G. V. Influence of altered gravity on the cytoskeleton of tip-growing plant cells: Extended abstract of candidate’s thesis, 142 p. (Kyiv, 2000) [in Ukrainian].
14. Braun M. Gravitropism in tip-growing cells. Planta, 203, 11 — 19 (1997).
https://doi.org/10.1007/PL00008098
15. Bush D. S. Regulation of cytosolic calcium in plants. Plant Physiol., 103 (3), 170—173 (1993).
https://doi.org/10.1104/pp.103.1.7
16. Evans D. E., Briars S.-A., Williams L. E. Active calcium transport by plant cell membranes. J. Experimental Botany, 42 (236), 285—303 (1991).
https://doi.org/10.1093/jxb/42.3.285
17. Hartmann E., Weber M. Storale of the phytochrome-mediated phototropic stimulus of moss protonemal tip cell. Planta, 175 (1), 39—49 (1988).
https://doi.org/10.1007/BF00402880
18. Kern V. D., Sack F. D. Irradiance-dependent regulation of gravitropism by red light in protonemata of the moss Ceratodon purpureus. Planta, 209, 299—307 (1999).
https://doi.org/10.1007/s004250050636
19. Pierson E. S., Millet D. D., Callaham D. A., et al. Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: Effect of BAPTA-type buffers and hypertonic media. Plant Cell, 6 (12), 1815—1828 (1994).
https://doi.org/10.1105/tpc.6.12.1815
20. Sack F. D. Plant gravity sensing. Int. Rev. Cytol., 127, 193—252 (1991).
https://doi.org/10.1016/S0074-7696(08)60695-6
21. Saunders M. J. Calcium and plant hormone action. In: Roberts J., Kirk C., Venis M. (Eds) Hormone perception and signal transduction in animals and plants: Proc. of Symposia of the Society for Experimental Biology, No. 44, 217—283 (The Company of Biol. Limited. Univ. of Combridge, 1990).
22. Sievers A., Behrens H. M., Buckhout T. J., et al. Can a Ca2+ pump in the endoplasmic reticulum of the Lepidium{ }root be the trigger for rapid changes in membrane potential after gravistimulation? Z. Pflanzenphysion. A, 114 (3), 195—200 (1984).
https://doi.org/10.1016/S0044-328X(84)80010-0
23. Sievers A., Buchen B., Hodick D. Gravity sensing in tip-growing cells. Plant Cell, 1 (8), 273—279 (1996).
https://doi.org/10.1016/1360-1385(96)10028-5

24. Sinclair W., Trewavas J. A. Calcium in gravitropism. A re-examination. Planta, 203, 85—90 (1997).
https://doi.org/10.1007/PL00008120