Adenoviruses as a model in the study of the effect of space flight factors

1Nosach, LM, 1Povnitsa, OYu., 1Zhovnovata, VL
1Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kiev, Ukraine
Kosm. nauka tehnol. 2007, 13 ;(2):086-089
Section: Space Life Sciences
Publication Language: Ukrainian
Simulated microgravity conditions, independently of multiplicity of infection, does not influence the reproduction of adenovirus in cells which were clinorotated for 48 h after adsorption of virus. The incubation of infected cells before clinorotation under static conditions at a temperature of 4 °С for three days (the conditions for keeping of cells before the flight) does not change the number of infected cells relatively to control, but some changes of cell morphology are revealed, namely round off and aggregation of cells. The adenoviruses which were exposed in the medium keep infectivity under the conditions of clinorotation at 4 and 20–22 °С over prolonged periods (90 and 60 days, respectively). A model is elaborated for investigation of the influence of space flight factors on the interaction of the adenovirus and Epstein–Barr virus genomes at combined infection of limphoblastoid cells.
Keywords: adenoviruses, clinorotation, infectivity
1. Diachenko N. S., Nas I., Berenchi D., et al. Adenovirus, Cell, Organism, 232 p (Nauk. Dumka, Kiev, 1988) [in Russian].
2. Nosach L. N., Dyachenko N. S. Cytopathology of adenovirus infection, 124 p. (Nauk. dumka, Kiev, 1982) [in Russian].
3. Nosach L. N., Diachenko N. S., Povnitsa O. I., et al. Study of the state of viral genomes under conditions of mixed infection of lymphoblastoid cells with adenovirus and Epstein—Barr virus. Citologija i genetika, 32 (4), 82—88 (1998) [in Russian].
4. Nosach L. M., Dyachenko N. S., Tarassishin L. O., et al. Determination of the temperature mode, duration of presence of the human adenovirus on orbital space stations and influence of clinorotation on some properties of the virus. Kosm. nauka tehnol., 9 (1), 96—101 (2003) [in Russian].
5. Povnitsa O. Yu., Dyachenko N. S., Chernomaz A. A., et al. Reproduction peculiarities of type 2 human adenovirus in the cultures of lymphoblastoid cells of B- and T-phenotype. Mikrobiol. zhurn., 59 (6), 12—20 (1997) [in Russian].
6. Smirnova I. A., Kishinskaya E. G., Nosach L. N., et al. Structural gene alterations in lymphoblastoid B- and T-cell lines upon mono- and double adenovirus and Epstein - Barr virus infection. Jeksperim. onkologija, 23 (1), 57—60 (2001) [in Russian].
7. Bordigoni P., Carret A-S., Venard V., et al. Treatment of adenovirus infections in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis., 32, 1290—1297 (2001).
8. Fuse A., Sato T. Effect of microgfavity changes on virus ingection in mice. J. Gravit. Physiol., 11 (2), 65—66 (2004).
9. Ginsberg H. S. Immune states in long-term space flights. Life Sci. Space Res., 9, 1—9 (1971).
10. Gordon Y. J., Gordon R. Y., Romanowski E., Araullo-Cruz T. P. Prolonged recovery of desiccated adenoviral serotypes 5, 8 and 19 from plastic and metal surfaces in vitro. Ophtalmology, 100 (12), 1835— 1840 (1993).
11. Howard D. S., Phillips G. L., Reece D. E. Adenovirus infections in hematopoietic stem cell transplant recipients. Clin. Infect. Dis., 29, 1494—1501 (1999).
12. La Rosa A. M., Champlin R. E., Mirza N., et al. Adenovirus infections in adult recipients of blood and marrow transplants. Clin. Infect. Dis., 32, 871—876 (2001).
13. Ling P. D., Lednicky J. A., Keitel W. A., et al. The dynamics of herpesvirus and polyomavirus reactivation and shedding in healthy adults: a 14-month longitudinal study. J. Infect. Dis., 187, 1571 — 1580 (2003).
14. Long J. P., Pierson S., Hughes J. H. Rhinovirus replication in Hela cells cultured under conditions of simulated microgravity. Aviat. Space Environ. Med., 69, 851—856 (1998).
15. Long J. P., Pierson S., Hughes J. H. Suppression of Epstein-Barr virus reactivation in lymphoid cells cultured in stimulated microgravity. In Vitro Cell Dev. Biol. Anim., 35 (1), 49—54 (1999).
16. Mehta S. K., Cohrs R. J., Forghani B., et al. Stress-induced subclinical reactivation of varicella zoster virus in astronauts. J. Med. Virol., 72, 174—179 (2004).
17. Mehta S. K., Stowe R. P., Fieveson A. H., et al. Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J. Infect Dis., 182 (6), 1761 — 1764 (2000).
18. Payne D. A., Mehta S. K., Tyring S. K., et al. Incidence of Epstein—Barr virus in salina during spaceflight. Aviat. Space Environ. Med., 72, 1211 — 1213 (1999).
19. Pierson D. L. Microbal contamination of spacecraft. Gravit. Space Biol. Bull., 14 (2), 1—6 (2001).
20. Pierson D. L., Stowe R. P., Phillips T. M., et al. Epstein-Barr virus shedding by astronauts during space flight. Brain Behav. Immun., 19 (3), 235— 242 (2005).
21. Sonnenfeld G., Gould C. L., Williams J., Mandel A. D. Inhibited interferon production after space flight. Acta Microbiol. Hung., 35 (4), 411—416 (1988).
22. Sonnenfeld G., Shearer W. T. Immune function during space flight. Nutrition, 18 (10), 899—903 (2002).
23. Stowe R. P., Mechta S. K., Ferrando A. A., et al. Immune responses and latent herpesvirus reactivation in spaceflight. Aviat. Space Environ. Med., 72, 884—891 (2001).
24. Stowe R. P., Pierson D. L., Barrett A. D. Elevated stress hormone levels relate to Epstein-Barr virus reactivation in astronauts. Psychosom. Med., 63, 891 — 895 (2001).
25. Stowe R. P., Pierson D. L., Feeback D. L., Barrett A. D. Stress-induced reactivation of Epstein-Barr virus in astronauts. Neuroimmunomodulation, 8 (2), 51—58 (2000).
26. Stowe R. P., Sams C. F., Pierson D. L. Effect of mission duration on neuroimmune responses in astronauts. Aviat. Space Environ. Med., 74 (12), 1281 — 1284 (2003).
27. Wang W. H., Wang H. L. Fulminant adenovirus hepatitis following bone marrow transplantation. A case repart and brief review of the literature. Arch. Pathol. Lab. Med., 127, 246—248 (2003).

28. Zayzafoon M., Meyers V. E., McDonald J. M. Microgravity: the immune response and bone. Immunol. Rev., 208, 267—280 (2005).