Platelets as potential peripheral markers to study functioning of the high-affinity sodium-dependent glutamate transporters in the nerve terminals of the brain

1Borisova, TA, 2Kasatkina, LA
1Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
2O.V. Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2007, 13 ;(2):080-85
Section: Space Life Sciences
Publication Language: Russian
Activity of the high-affinity sodium-dependent glutamate transporters in the brain nerve terminals is demonstrated to alter under artificial gravity conditions. A comparison analyzis is made for L- [14С] glutamate transport in platelets and isolated nerve terminals. The kinetic characteristics of the transporters, [Na+]-dependence and influence of the transporter inhibitor DL-threo-beta-benzyloxyaspartate on the L- [14С] glutamate uptake process are determined. It is shown that glutamate uptake process is very similar for platelets and nerve terminals. Thus it is reasonable to use platelets as a potential peripheral model for glutamate transport. �онкурентного інгібітора DL-трео-бета-гідрокси-аспартату на процес накопичення L- [14С] глутамату тромбоцитами і нервовими закінченнями. Показано, що значення vmaxпроцесу накопичення значно менші у препараті тромбоцитів ніж у нервових закінченнях. Очевидно, це пов'язано з тим, що плазматична мембрана синаптосом містить більшу кількість транспортерів глутамату, ніж мембрана тромбоцитів. У цілому процес накопичення глутамату тромбоцитами і синаптосомами демонстрував значну подібність, і тромбоцити можна використовувати як потенційну периферичну модель транспорту глутамату в ЦНС.
Keywords: inhibitor, platelets, transporters
1. Borisova T. A., Himmelreich N. H. Centrifuge-Induced Hypergravity: [3H]GABA and L-[I4C]glutamate Uptake, Exocytosis and Efflux Mediated by High-Affinity, Sodium-Dependent Transporters. Adv. Space Res., 36, 1340—1345 (2005).
2. Borisova T., et al. Comparison of DL-threo-b-benzyloxy-aspartate effects on the glutamate release from synaptosomes before and after exposure of rats to artificial gravity. J. Gravit. Physiol., 12, 23—24 (2005).
3. Borisova T. A., Krisanova N. V., Himmelreich N. H. Exposure of animals to artificial gravity conditions leads to the alteration of the glutamate release from rat cerebral hemispheres nerve terminals. Adv. Space Res., 33, 1362—1367 (2004).
4. Cotman C. W. Isolation of synaptosomal and synaptic plasma membrane fractions. Meth. Enzymol., 31, 445—452 (1974).
5. Danbolt N. C. Glutamate uptake. Progr. Neurobiol., 65, 1 — 105 (2001).
6. Gawaz M. Blood platelets, 300 p. (Georg Thieme Verlag Book, Stuttgart, New York, 2001).
7. Gegelashvili G., Schousboe A. Cellular distribution and kinetic properties of affinity glutamate transporters. Brain Res. Bull., 45 (3), 233—238 (1998).
8. Larson E., Howlett B., Jagendorf A. Artificial reductant enhancement of the Lowry method for protein determination. Analitical Biochemistry, 155, 243—248 (1986).

9. Mangano R., Schwarcz R. The human platelets as a model for the glutamatergic neuron: platelet uptake of L-glutamate. J. Neurochemistry, 36 (3), 1067—1076 (1981). ge:EN-US'>

9. Kordyum E. L. Biology of plant cell in microgravity and under clinostating. Intern. Rev. Cytology, 171, 1—77 (1997).
10. Liu X., Huang B. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Science, 40, 503—510 (2000).
11. Navari-Izzo F., Pinzino C, Quartacci M. F., Sgherri C. L. Superoxide and hydroxyl radical generation and superoxide dismutase in PSII membrane fragments from wheat. Free Radical Res., 31, 3—9 (1999).

12. Yamamoto Y. Quality control of photosystem II. Plant and Cell Physiology, 42 (2), 121 — 128 (2001).