Wind changes in upper atmosphere over earthquakes from satellite measurements
Heading:
1Kozak, LV, 2Ivchenko, VM 1Taras Shevchenko National University of Kyiv, Physical Faculty, Kyiv, Ukraine 2Taras Shevchenko National University of Kyiv, Kyiv, Ukraine |
Kosm. nauka tehnol. 2002, 8 ;(4):054-063 |
https://doi.org/10.15407/knit2002.04.054 |
Publication Language: Russian |
Abstract: We performed a search for a possible change of the horizontal component of the wind velocity at altitudes of 80–300 km over earthquake epicenters. We used the measurement data derived by the WINDII device set on the board of the UARS satellite from 24 December 1991 till 12 April 1994. We analysed 234 earthquakes with the magnitude more than 6. We tried to detect common tendencies for all earthquakes using the method of epoch superposition. In addition, we analysed a wind change over each earthquake by plotting wind maps for an altitude of 90 km. We noted wind growing at altitudes 81 –102 km and 135–250 km together with disturbance of the wind radial component relatively an earthquake epicenter at altitudes of 125–260 km which has a maximum one day before the earthquake. The generation and propagation of inner gravity waves can be considered as a possible mechanism of energy transfer from an earthquake into upper atmosphere.
|
Keywords: earthquake, inner gravity waves, upper atmosphere |
References:
1. Bott M. H. P. The interior of the earth (Mir, Moscow, 1974) [in Russian].
2. Gavrilov N. M., Yudin V. A. Numerical modelling of the IGW propagation from nonstationary tropospheric sources. Izvestiia AN SSSR, Fizika Atmosfery i Okeana, 23 (3), 241—254 (1987) [in Russian].
3. Gordiets B. F., Kulikov Yu. N. On the role of turbulence and infrared radiation in the heat balance of the lower thermosphere. In: Basov N. G. (Ed.) Infrared spectroscopy of cosmic matter and the properties of the environment in space, Tr. Fiz. in-ta, AS USSR, Vol. 130, 29—47 (Nauka, Moscow, 1982) [in Russian].
4. Gordiets B. F., Kulikov Iu. N., Markov M. N., Marov M. Ya. Numerical modeling of heating and cooling of gas in near-Earth space. In: Basov N. G. (Ed.) Infrared spectroscopy of cosmic matter and the properties of the environment in space, Tr. Fiz. in-ta, AS USSR, Vol. 130, 3—28 (Nauka, Moscow, 1982) [in Russian].
5. Gokhberg M. B., Morgunov V. A., Pokhotelov O. A. Seismoelectromagnetic phenomena, 174 p. (Nauka, Moscow, 1988) [in Russian].
6. Gokhberg M. B., Shalimov S. L. Lithosphere–ionosphere relation and its modeling. Rossijskij zhurn. nauk o Zemle, 2 (1), 95—108 (2000) [in Russian].
7. Dzubenko M. I., Ivchenko V. M., Kozak L. V. Temperature variations over earthquake epicenters from observations obtained by the UARS satellite. Kosm. nauka tehnol., 7 (5-6), 94—99 (2001) [in Russian].
https://doi.org/10.15407/knit2001.05.094
https://doi.org/10.15407/knit2001.05.094
8. Kolokolov L. E., Liperovskaya E. V., Liperovsky V. A., et al. Sudden spreading of sporadic E layers in the middle-latitude ionosphere prior to earthquakes. Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 7, 101—109 (1992) [in Russian].
9. Larkina V. I., Nalivaiko A. V., Gershenzon N. I., et al. Observations of the VLF-emissions related to earthquakes from the board of INTERCOSMOS-19 satellite. Geomagnetizm i Aeronomiia, 23 (5), 842—846 (1983) [in Russian].
10. Liperovsky V. A., Pokhotelov O. A., and Shalimov S. L. Ionospheric precursors of earthquakes, 340 p. (Nauka, Moscow, 1992) [in Russian].
11. Pertsev N. N., Shalimov S. L. The generation of atmospheric gravity waves in a seismically active region and their effect on the ionosphere. Geomagnetizm i Aeronomiia, 36 (2), 111— 118 (1996) [in Russian].
12. Webb W. L. (Ed.) Thermospheric circulation, 350 p. (Mir, Moscow, 1975) [in Russian].
13. Toroshelidze T. I., Fishkova L. M. Analysis of fluctuations of the nightglow of the middle and upper atmosphere preceding earthquakes. Doklady AN SSSR, 302 (2), 313—316 (1988) [in Russian].
14. Fishkova L. M., Toroshelidze T. I. Displaying seismic activity variations in the glow of the night sky. In: Auroras and the glow of the night sky, No. 33, 17—23 (Nauka, Moscow, 1989) [in Russian].
15. Dzubenko M. I., Kozak L. V. A search of correlation between aurora activity and near earthquakes. In: Hayakawa M., Molchanov O. A. (Eds) Seismo electromagnetics lithosphere-atmosphere-ionosphere coupling, 333—335 (TERAPUB, Tokyo, 2002).
16. Molchanov O. A., Hayakawa M. Generation of ULF seismogenic electromagnetic emission: a natural consequence of microfracturing process. In: Hayakawa M., Fujinawa Y. (Eds) Electromagnetic phenomena related to earthquake prediction, 537—563 (Terra Publ. Sci. Co., Tokyo, 1994).
17. Reber C. A., Trevathan C. E., McNeal R. J., Luther M. R. The Upper Atmosphere Research Satellite (UARS) mission. J. Geophys. Res., D98 (6), 10643—10647 (1993).
https://doi.org/10.1029/92JD02828
https://doi.org/10.1029/92JD02828
18. Shepherd G., Thuillier G., Gault W. A., et al. WINDII — The Wind Imaging Interferometer on the Upper Atmosphere Reseasrch Satellite. J. Geophys. Res., D98, 10725—10750 (1993).
https://doi.org/10.1029/93JD00227