Problems connected with the prolonged staying of spacecraft with astronauts on board in the interplanetary space

1Baranskii, PI, 2Venger, EF, 3Gaidar, OV
1V.Ye. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2V.Ye. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
3Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2002, 8 ;(4):086-095
https://doi.org/10.15407/knit2002.04.086
Publication Language: Ukrainian
Abstract: 
Some problems connected with planning and practical realization of prolonged travels in the interplanetary space are discussed in detail.  The analysis of the present-day state of science and technique attests that: –  The electromagnetic protection against irradiation of the spacecraft (intended for prolonged space travel), its crew, necessary facilities for the reactivation of abiomass and oxygen (in the form of space greenhouses or of practically useful microorganisms), semiconductor elemental base of onboard computers, systems of automatics and radiotelecommunications should be provided by using materials of the future only. These materials should be characterized by high-temperature superconductivity with high values of critical magnetic fields, and they should also possess mechanical reliability and radiation hardness. –  Normal functioning of crew members and other living objects as well as the operation of semiconductor elemental base of technical units and automatic facilities of the onboard systems can be provided only by creating such magnetic conditions on board the spacecraft which are close to the terrestrial condition. That is, the cabin of the spacecraft itself will be carefully shielded from the strong magnetic field (of an order of few kOe) which serves as an electromagnetic shield of the spacecraft from the cosmic (predominantly proton) radiation.
Keywords: electromagnetic protection, facilities for the reactivation, prolonged space travel
References: 
1. Abdullina Z. M. Biological effect of magnetic fields on a living organism, 148 p. (Kyrgyzstan, Frunze, 1975) [in Russian].
2. Baransky P. I., Mishchenko L. T. Method of presowing seed treatment (magnetic field). A. s. 913993 SSSR, MKI; published 23.03.1982, Bull. No. 11 [in Russian].
3. Baransky P. I., Mishchenko L. T. The change in the EPR spectra in resting seeds of some agricultural plants that arise under the influence of constant external magnetic fields. Dokl. AN USSR. Ser. B, No. 10, 843—845 (1979) [in Russian].
4. Baransky P. I., Mishchenko L. T. Experimental evidence of the influence of magnetic fields on seeds of grain crops in the state of biological dormancy and in the process of their germination. Elektronnaya obrabotka materialov, No. 1 (127), 69—72 (1986) [in Russian].
5. Baransky P. I., Mishchenko L. T., Pasha P. N. Temperature and field dependences of the energy of germination of seeds of alfalfa from their processing in a constant magnetic field before sowing. Elektronnaya obrabotka materialov, No. 3, 75—77 (1982) [in Russian].
6. Vvedensky V. L., Ozhogin V. I. Supersensitive magnetometry and biomagnetism, 200 p. (Nauka, Moscow, 1986) [in Russian].
7. Vilenchik M. M. Magnetic effects in biology. Usp. Sovrem. Biol., 63 (1), 54—72 (1967) [in Russian].
8. Vyalov A. M. Clinico-hygienic and experimental data on the effects of magnetic fields under industrial conditions. In: Influence of Magnetic Fields on Biological Objects, 165—177 (Nauka, Moscow, 1971) [in Russian].
9. Ginzburg V. L. What problems of physics and astrophysics seem now to be especially important and interesting (thirty years later, already on the verge of XXI century)? Uspehi fiz. nauk, 169 (4), 419—441 (1999) [in Russian].
10. Demetsky A. M., Rozvadovsky V. D., Surganova S. F., et al. In: Effect of Magnetic Fields on Biological Objects: Proc. 3rd All-Union Symp., 154—155 (Kaliningrad State University, Kaliningrad, 1975) [in Russian].
11. Dubrov A. P. Effect of heliogeophysical factors on membrane permeability and diurnal rhythm of excretion of organic substances by plant roots. Dokl Akad Nauk SSSR, 187 (6), 1429—1431 (1969) [in Russian].
12. Dubrov A. P. Effect of the geomagnetic field on physiological processes in plants. Fiziol. Rast., 17 (4), 836—842 (1970) [in Russian].
13. Dubrov A. P. Geomagnetic Field and Life, 175 p. (Gidrometeoizdat, Leningrad, 1974) [in Russian].
14. Zabrodina L. V. The state of the blood coagulation system in electrolysis cells with different work experience in the aluminum industry. In: Effect of Magnetic Fields on Biological Objects: Proc. 3rd All-Union Symp., 161 (Kaliningrad State University, Kaliningrad, 1975) [in Russian].
15. Kazimirovskii E. S. We live in the corona of the Sun, 134 p. (Nauka, Moscow, 1983) [in Russian].
16. Lebedev S. I., Baranskii P. I., Litvinenko L. G., et al. Plants in Very Weak Magnetic Field. Elektronnaya obrabotka materialov, No. 3(75), 71—73 (1977) [in Russian].
17. Meshcheryakov F. A., Lapin V. I. Influence of permanent magnetic fields on daily biorhythms of guinea pigs. In: Effect of Magnetic Fields on Biological Objects: Proc. 3rd All-Union Symp., 200—201 (Kaliningrad State University, Kaliningrad, 1975) [in Russian].
18. Mikhailovskii V. M., Krasnogorskii M. M., Voichishin K. S., et al. Perception of weak magnetic fields by people. Dopovidi Akad. Nauk URSR, Series B, No. 10, 929—933 (1969) [in Ukrainian].
19. Novitskii Yu. I., Strekova V. Yu., Tarakanova G. A. The Effect of Static Magnetic Field on Plant Growth. In: Vliyanie magnitnykh polei na biologicheskie ob”ekty [Magnetic Field Influence on Organisms], 69—88 (Nauka, Moscow, 1971) [in Russian].
20. Paton B. E. Welding Problems at the Turn of the Century. In: Welding and Related Technologies – into the 21st Century: Proc. Intern. Conf., 5—12 (Kyiv, 1998) [in Russian].
21. Paton B. E., Gavrish S. S., Shulym V. F., et al. Manual electron-beam technology operations in space. Avtomaticheskaya Svarka, No. 10 (559), 7—22 (1999) [in Russian].
22. Paton B. E., Lapchinsky V. F. Welding and related technologies in space, 184 p. (Nauk. Dumka, Kiev, 1998) [in Russian].
23. Perepechin E. A. Influence of PMP on reproductive function of animals. In: Effect of Magnetic Fields on Biological Objects: Proc. 3rd All-Union Symp., 99 (Kaliningrad State University, Kaliningrad, 1975) [in Russian].
24. Pochtarev V. I. Magnetizm Zemli i kosmicheskogo prostranstva [Magnetism of the Earth and Space], 184 p. (Nauka, Moscow, 1966) [in Russian].
25. Presman A. S. Electromagnetic Fields and Wildlife, 288 p. (Nauka, Moscow, 1968) [in Russian].
26. Sagdeev R. Z., Salikhov K. M., Molin Yu. N. The Influence of the Magnetic Field on Processes Involving Radicals and Triplet Molecules in Solutions. Usp. Khim., 46 (4), 569—601 (1977) [in Russian].
https://doi.org/10.1070/RC1977v046n04ABEH002133
27. Sytnik K. M., Kordyum V. A., Kordyum E. L., et al. Microorganisms in space flight, 156 p. (Nauk. dumka, Kiev, 1983) [in Russian].
28. Sytnik K. M., Kordyum E. L., Nedukha E. M., et al. The plant cell under the changing geophysical factors, 136 p. (Nauk. dumka, Kiev, 1984) [in Russian].
29. Kholodov Yu . A. Effect of magnetic field on the nervous system. In: Vliyanie magnitnykh polei na biologicheskie ob”ekty [Magnetic Field Influence on Organisms], 216 p. (Nauka, Moscow, 1971) [in Russian].
30. Kholodov Yu . A. The reaction of the animal and human organism to magnetic fields. In: Problems of Space Biology, 18, 143—163 (Nauka, Moscow, 1973) [in Russian].
31. Gazenko O. G. (Ed.) A man in a long space flight, Transl. from Eng., 360 p. (Mir, Moscow, 1974) [in Russian].
32. Chizhevskii A. L., Shishina Yu. G. In the rithm of the Sun, 112 p. (Nauka, Moscow, 1969) [in Russian].
33. Aceto H., Tobias C. A., Silver I. L. Some studies on the biological effects of magnetic fields. IEEE Transact on magnetics, V. MAG, 6 (2), 368—373.
34. Beischer D. E. Biomagnetics. N. Y. State J. Med., 134, 939 (1965).
35. Beischer D. E. US Naval Aerospace Medical Institute, Pensacola, Fla., NASA CR 94966.
36. Beischer D. E. Do Earth and Lunar magnetic fields have an effect or man and does man himself exert magnetic force? 37-th Annual Scientific Meeting of Aerospace Medicine Association (Las Vegas, Newada, 1966). Conley C. C. Effects of nearzero magnetic fields upon biological systems. In: Biological Effects of Magnetic fields, 1, 29—52 (Plenum, New York, 1969).
37. Beischer D. E., Knepton J. C. In: Aerospace Med., 35, 939—944 (1964).
38. Beischer D. E., Knepton J. C. The electroencephalogram of the squirrel monkey (saimiri scuireus) in a very high magnetic field, MAMI-972 (1966).
39. Comstock G. M., Fleischer R. L., Giard W. R., et al. Cosmic-ray tracks in plastics: The Apollo helmet dosimetry experiment. Science, 172, 154—157 (1971).
https://doi.org/10.1126/science.172.3979.154

40. Miro L., et al. Biologic effect of hypomagnetic environment. Presse Therm Clim., 107 (1), 32—34 (1970).