Degradation of the electric power of solar arrays under the influence of the near-satellite environment in geostationary orbits

1Shuvalov, VA, 2Kochubey, GS, 2Priimak, AI, 2Reznichenko, NP
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2002, 8 ;(4):025-036
Publication Language: Russian
We assess the influence of various factors – the ionizing and ultraviolet radiation, pollution by the products of electrojet engine exhausts and destruction of spacecraft's external surface materials, thermal cycling, and radiation electrization – on the power characteristics of solar arrays during long-term (7–10 years) missions in geostationary orbits.
Keywords: degradation, near-satellite environment, solar arrays
1. Akishin A. I. Electric discharge damage of spacecrafts solar batteries in magnetospheric and ionospheric plasma. Fizika i himija obrabotki materialov, No. 2, 43—49 (1995) [in Russian].
2. Akishin A. I. Electric discharge effects in irradiated dielectrics can reduce reliability of space and thermonuclear equipments. Fizika i himija obrabotki materialov, No. 5, 37—44 (1997) [in Russian].
3. Akishin A. I. Emission processes under electric breakdown of radiation-charged insulators. Fizika i himija obrabotki materialov, No. 5, 27—30 (1998) [in Russian].
4. Akishin A. I., Baikal’tsev V. B., Tyutrin Yu. I. Effect of electron Beams on protection coatings of solar cells. Fizika i himija obrabotki materialov, No. 4, 68—71 (1991) [in Russian].
5. Akishin A. I., Tyutrin Yu. I., Tseplyaev L. I. Electric discharge mechanism of solar cell damaging under electron irradiation. Fizika i himija obrabotki materialov, No. 6, 56—60 (1996) [in Russian].
6. Antonov V. M., Ponomarenko A. G. Laboratory Studies of Effects of Spacecraft Electrification, 115 p. (Nauka, Novosibirsk, 1992) [in Russian].
7. Askhabov S. N., Burgasov M. P., Veselovzorov A. N., et al. Study on the jet of the stationary plasma accelerator with closed electron drift. Fizika Plazmy, 7 (1), 225—230 (1981) [in Russian].
8. Burgasov M. P., Nadiradze A. B., Chirov A. A., et al. Effects of Interaction of Jets of Electric Rocket Engines with Solar Arrays of Spacecraft. Kosm. Issled., 32 (4-5), 194—201 (1994) [in Russian].
9. Grishin S. D., Leskov L. V. Electric Rocket Engines of Spacecraft, 216 p. (Mashinostroenie, Moscow, 1989) [in Russian].
10. Danilin B. S., Kireev V. Yu. Application of Low-Temperature Plasma for Etching and Cleaning of Materials, 264 p. (Energoatomizdat, Moscow, 1987) [in Russian].
11. Koltun M. M. Solar Cells, 192 p. (Nauka, Moscow, 1987) [in Russian].
12. Korn V. Z., Shuvalov V. A. Probe Diagnostics of a Flux of Particles Desorbed from the Surface of a Solid Body by a Jet of Rarefied Plasma. Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 34 (5), 144—150 (1993) [in Russian].
13. Kreinin L. B., Grigorieva G. M. Solar Cells in the Conditions of Impact of Cosmic Radiation. Itogi nauki i tehniki. VINITI. Issledovanie kosmicheskogo prostranstva, 13, 128 p. (1979) [in Russian].
14. Letin V. A., Zayavlin V. R., Eremin P. A. Combined Influence of Space Factors in Thermovacuum Tests of Solar Batteries. Kosmicheskie Issledovaniia, 37 (3), 329—331 (1999) [in Russian].
15. Vernov N. S. (Ed.) A Model of Outer Space (Cosmos Model-82), vol. 2, 770 p. (Vol. 1-3; Vol. 2) (Mosk. Gos. Univ., Moscow, 1983) [in Russian].
16. Vernov N. S. (Ed.) A Model of Outer Space (Cosmos Model-82), vol. 3, 635 p. (Vol. 1-3; Vol. 3) (Mosk. Gos. Univ., Moscow, 1983) [in Russian].
17. Neff J. A., Mullen K. R., Fogdol L. B. The Influence of Modeled Conditions in Synchronous Orbit on Characteristics of Contaminated Solar Reflector. Aerokosmich. Tekh., No. 8, 91—97 (1987) [in Russian].
18. Olsen R. K. Extreme Potentials of Charging Recorded during a Flight of the ATS-6 Satellite. Aerokosmich. Tekh., No. 5, 90—97 (1988) [in Russian].
19. Prisniakov V. F. On the degradation of solar batteries aboard space vehicles. Kosm. nauka tehnol., 2 (1-2), 73—81 (1996) [in Russian].
20. Behrisch R. (Ed.) Sputtering by Particle Bombardment, Vol. 2, 488 p. (Vol. 1-2; Vol. 2) (Mir, Moscow, 1986) [in Russian].
21. Rauschenbach H. S. Solar cell array design handbook: the principles and technology of photovoltaic energy conversion, 360 p. (Jenergoatomizdat, Moscow, 1983) [in Russian].
22. Starodubtsev V. A., Yagushkin N. I. Manifestation of electrification effects in study of radiation optical properties of glasses. Izv. vuzov. Fizika, No. 5, 14—17 (1986) [in Russian].
23. Fudji X., Shibuya I., Abe T., et al. Modeling of Processes of Electrification and Discharge of Electrically Insulating Covers of Satellites by Way of Irradiation of Their Surfaces with Electron Beams. Aerokosmich. Tekh., No. 5, 104—111 (1989) [in Russian].
24. Chirov A. A., Burgasov M. P., Zayavlin V. R., et al. Influence of Plasma Streams from an Ion-Plasma Jet Engine on Power-producing Features of Solar Arrays. Kosmicheskie Issledovaniia, 35 (3), 331— 333 (1997) [in Russian].
25. Shuvalov V. A., Kochubey G. S., Priymak A. I., et al. Simulation of Radiative Electrization of Spacecraft leeward surfaces in the Ionosphere. Kosm. nauka tehnol., 7 (5-6), 30—43 (2001) [in Russian].
26. Shuvalov V. A., Levkovich O. A., Kochubey G. S. Approximate Models of Plume Flows from Electric Propulsion Engines of Spacecraft. Kosm. nauka tehnol., 4 (5-6), 105—109 (1998) [in Russian].
27. Shuvalov V. A., Priimak A. I., Gubin V. V. Radiative Electrification of Spacecraft Construction Elements: Physical Modeling of Charge Accumulation and Neutralization. Kosmicheskie Issledovaniia, 39 (1), 18—26 (2001) [in Russian].
28. Shuvalov V. A., Churilov A. E., Bystritskii M. G. Diagnostics of Flows of Pulsed Plasma by Probe, Microwave, and Photometric Methods. Teplofizika vysokih temperatur, 38 (6), 877—881 (2000) [in Russian].
29. Yagushkin N. I., Grafodatskii O. S., Islyaev Sh. N., et al. Radiation and Electric Phenomena in Dielectric Materials of Spacecraft at Electrifications. Issled. Geomagn. Aeron. Fiz. Solntsa, Is. 86, 131 — 168 (1989) [in Russian].
30. Boyd I. D. Review of hall thruster plume modeling. J. Spacecraft and Rockets, 38 (3), 381—387 (2001).
31. Dever J. A., Bruckner E. J., Scheiman D. A., et al. Contamination of space environmental effects on solar cells and thermal control surfaces. J. Spacecraft and Rockets, 32 (5), 850—851 (1995).
32. Gaffey J. D., Biliza D. NASA / National space science data center trapped radiation models. J. Spacecraft and Rockets, 31 (2), 172—176 (1994).
33. Garrett H. The geosynchronous plasma environment. Techol. Environment Spatial, 337—411 (Toulous, 1987).
34. Gatsonis N. C., Eckman R., Yin X., et al. Experimental investigations and numerical modeling of pulsed plasma thruster plumes. J. Spacecraft and Rockets, 38 (3), 454—464 (2001).
35. Goldhammer L. G. Irradiation of solar cell candidates for the ATS-F solar cell flight experiment. Conf. Rec. 9th IEEE Photovolt. Specialists conf., 316—328 (N. Y., 1972).
36. Konradi A., Mc Coy J. E, Garriott O. K. Current leakage for low altitude satellites: modeling application. Quantitative modeling of magnetospheric processes, 617—633 (Washington, 1979).
37. Leet S. J., Fogdall L. B., Wilkinson M. C. Thermooptical property degradation of irradiated spacecraft surfaces. J. Spacecraft and Rockets, 32 (5), 832—838 (1995).
38. Letin V. A., Bordina N. M., Zayavlim V. R., et al. An experimental simulation of space environment effects on the solar-cell battery. In: Problems of spacecraft-environment interaction: Int. conf., Novosibirsk, 1992, 110—112 (Irkutsk, 1992).
39. Mandell M. J., Katz J., Steen P. J., et al. The effect of solar array voltage patterns plasma power losses. IEEE Trans. Nucl. Sci., V. NS-27, No. 6, 1797—1800 (1980).
40. Parker L. W. Differential charging and sheath asymmetry of nonconducting spacecraft due to plasma flows. J. Geophys. Res., 83 (A10), 4873—4880 (1978).
41. Pippin H. G., Woll S. L. B., Loebs V. A., Bohnhoff-Hlavacen G. Contamination effects on the passive optical sample assembly experiments. J. Spacecraft and Rockets, 37 (5), 567—572 (2001).
42. Rosenzweig W. Space radiation effects in silicon devices. IEEE Trans. Nucl. Sci., NS-12, N 5, 18—29 (1965).
43. Stevens N. J., Barbay G. J., Jonenes M. R., et. al. Modeling of environmentally induced transients within satellites. J. Spacecraft and Rockets, 24 (3), 259—263 (1987).
44. Tajmar M., Gonzalez J., Hilgers A. Modeling of spacecraft-environment interactions on SMART-1. J. Spacecraft and Rockets, 38 (3), 393—399 (2001).
45. Tarasov V. N., Babkin G. V, Morozov E. P., et al. Electrostatic behaviour of solar-cell batteries under conditions of radiation electrization. Problems of spacecraft-environment interaction: Int. conf., Novosibirsk, 1992, 58—59 (Irkutsk, 1992).
46. Tribble A. C. Revised estimates of photochemically deposited contamination on the Global Positioning System satellites. J. Spacecraft and Rockets, 35 (1), 114—116 (1998).
47. Tribble A. C., Boyadjian B., Davis J., et al. Contamination control engineering design guidelines for the aerospace community. NASA Contractor Report, No. 4740, 126 p. (NASA—1996).
48. Tribble A. C., Haffner J. W. Estimates of photochemically deposited contamination on the GPS satellites. J. Spacecraft and Rockets, 28 (2), 222—227 (1991).
49. Yagushkin N. L., Sergeev A. L., Grafodatsky O. S., et al. Laboratory investigations of environment effect on spacecraft structural materials. Problems of spacecraft-environment interaction: Int. conf., Novosibirsk, 1992, 48—49 (Irkutsk, 1992).