Probabilistic estimation of electric energy supply for spacecraft

1Belov, DG
1Yangel Yuzhnoye State Design Office, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2002, 8 ;(4):037-042
https://doi.org/10.15407/knit2002.04.037
Publication Language: Russian
Abstract: 
We analyze the principal factors which affect the electric energy supply of the spacecraft. These factors are shown to form a set of random quantities with limited domain. We built a mathematical model of more adequate probabilistic estimation of electric energy supply for spacecraft and developed some algorithms for the application of this model in the construction of spacecraft.
Keywords: adequate probabilistic estimation, algorithms, energy supply
References: 
1. Baluzin V. M., Dulov V. I. Estimation of energy consumption in the design of an autonomous power supply system. In: Electrical equipment of autonomous objects: Collection of scientific papers, No. 143, 19—23 (Moscow Energetic Institute, Moscow, 1987) [in Russian].
2. Belov D. G. Forming the program of spacecraft operation under electric power constraints. Kosm. nauka tehnol., 3 (5-6), 120—126 (1997) [in Russian].
3. Egorov A. V., Ershov S. M. Restoration of the law of distribution of probabilities of electrical loads by design factors. Izv. vysshih uchebnyh zavedenij i jenergeticheskih ob#edinenij SNG. Jenergetika, No. 1-2, 50—52 (1993) [in Russian].
4. Zhirnova N. B., Leonova M. V., Zolotov A. I. Analysis of the run-up of the capacitive characteristics of batteries connected in a series on autonomous objects. In: Electrical equipment of autonomous objects: Collection of scientific papers, No. 143, 41—45 (Moscow Energetic Institute, Moscow, Moscow, 1987) [in Russian].
5. Lazarev I. A. Synthesis of aircraft power-supply system structure, 256 p. (Mashinostroenie, Moscow, 1976) [in Russian].
6. Maksimov G. Yu. Theoretical basis for the development of space vehicles, 320 p. (Nauka, Moscow, 1980) [in Russian].
7. Prisniakov V. F. On the degradation of solar batteries aboard space vehicles. Kosm. nauka tehnol., 2 (1-2), 73—81 (1996) [in Russian].
8. Sobol' I. M. Numerical Monte Carlo methods, 311 p. (Nauka, Moscow, 1973) [in Russian].
9. Bezruchko K. V., Belan N. V., Belov D. G., et al. Spacecraft solar power systems. Physical and mathematical modeling, Ed. by S. N. Konyukhov, 515 p. (National aerospace university "Kharkiv Aviation Institute", Kharkiv, 2000) [in Russian].
10. Tenkovtsev V. V., Tsenter B. I. The fundamentals of the theory and operation of hermetic nickel-cadmium batteries, 96 p. (Jenergoatomizdat, Leningrad, 1985) [in Russian].
11. Lidorenko N. S., Asharin L. N., Borisova N. A., et al. Probability-theoretic characteristics of solar batteries. Izv. AN SSSR. Jenergetika i transport, No. 6, 26—29 (1980) [in Russian].
12. Timashev S. V., Kuzmin M. A., Chilin Yu. N. Optimization of Power Systems of Orbital Manned Stations, 232 p. (Mashinostroenie, Moscow, 1986) [in Russian].
13. Hardingham C., Bogus K., Detlaff K. GaAs/Ge large area industrial solar cells-qualification. Proc. of the 5th European Space Power Conf., 21—25 September 1998, Vol. 2, 639—642 (Tarragona, Spain, 1998).

14. Jalinat A., Picart G., Rapp E., Samson Ph. In-orbit behaviour of SPOT 1, 2 and 3 solar arrays. Proc. of the 5th European Space Power Conf., 21—25 September 1998, Vol. 2, 627—631 (Tarragona, Spain, 1998).