Cosmic ray propagation in the spatially inhomogeneous interplanetary scattering medium

1Kolesnyk, Yu.L, 1Shakhov, BA
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2007, 13 ;(Supplement1):115-117
https://doi.org/10.15407/knit2007.01s.115
Publication Language: Russian
Abstract: 
The case when the interplanetary stochastic magnetic field is modeled as a spatially inhomogeneous scattering medium with the diffusion coefficient proportional to distance to the Sun. Galactic cosmic ray (CR) propagation problem in a medium of this sort is solved by the iteration method. The iteration solution is compared with exact analytical solution for inhomogeneous medium and also with iteration solutions to describe the different CR propagation effects in heliosphere when the scattering parameters depend on the particle energy. It is demonstrated that two iterations are sufficient to describe CR intensity. It is shown that CR intensity near the Sun is significantly smaller for this model than for the model with CR diffusion coefficient constant in space.
Keywords: cosmic rays, diffusion coefficient, interplanetary stochastic magnetic field
References: 
1. Abramowitz M., Stegun I. A. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, 830 p. (Nauka, Moscow, 1979) [in Russian].
2. Dolginov A. Z., Toptygin I. M. Diffusion of Cosmic Particles in the Interplanetary Medium. Geomagnetizm i Aeronomiia, 7 (6), 967—973 (1967) [in Russian].
3. Dolginov A. Z., Toptygin I. N. The theory of motion of cosmic particles in interplanetary magnetic fields. In: Proceedings of the 5th All-Union School on Cosmophysics, 167—182 (Izd-vo Kol'skogo filiala AN SSSR, Apatity, 1968) [in Russian].
4. Dorman L. I. Experimental and theoretical foundations of cosmic ray astrophysics, 462 p. (Nauka, Moscow, 1975) [in Russian].
5. Toptygin I. N. Cosmic Rays in Interplanetary Magnetic Fields, 302 p. (Nauka, Moscow, 1983) [in Russian].
6. Shakhov B. A., Kolesnyk Yu. L. Iteration method for solution of cosmic ray propagation theory boundary problems. Kinematika i Fizika Nebesnykh Tel, 22 (2), 101 — 108 (2006) [in Russian].
7. Dorman L. I., Kats M. E., Fedorov Iu. I., Shakhov B. A.  Variations of cosmic-ray energy in interplanetary space. Astrophys. and Space Sci., 94, 43—95 (1983).
https://doi.org/10.1007/BF00651760 
8. Goldstein M. L., Fisk L. A., Ramaty R. Energy loss of cosmic rays in the interplanetary medium. Phys. Rev. Lett., 25 (12), 832—838 (1970).
https://doi.org/10.1103/PhysRevLett.25.832 

9. Webb G. M. Monoenergetic-sourse solutions of the steady-state cosmic ray equation of transport. Astrophys. and Space Sci., 50, 349—360 (1977).
https://doi.org/10.1007/BF00641742