Means of measurement of heat flows in thermal vacuum research and testing of products of space engineering

1Poshtarenko, Yu.A, 1Rassamakin, BM, 1Rogachov, VA, 1Khominich, VI, 1Shevchenko, MD
1National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
Space Sci. & Technol. 2022, 28 ;(1):51-60
https://doi.org/10.15407/knit2022.01.051
Publication Language: Ukrainian
Abstract: 
We present the results of the comparative analysis of the characteristics of the domestic-made heat flux sensor PTP-1B with widely used foreign-made area sensor FOA-020.  The conditions are typical to the ground-based thermovacuum research and testing of space technology products, conducted in the absence of validated converter-sensors of the aggregated heat flux within the density range of up to 2000 W/sq. m and a spectral range of 0.2 - 20 µm.

            Experimental studies were performed in a thermal vacuum chamber of the experimental stand TEC-2.5 at the temperature of its internal surfaces of 20 0C. Recommendations regarding the possible use of the PTP-1B sensor as a working instrument of measurements in monitoring and diagnostic systems during the processes of ground testing of space technology objects are given

Keywords: external infrared radiation, ground-based experimental testing of space technology products, heat flow sensor, heat flux density, own temperature of the sensor, thermal vacuum tests
References: 

1. Andreychuk O. B., Malakhov N. N. (1982). Thermal tests of spacecraft. Mosсow: Mechanical engineering [in Russian].

2. Aslanyan R. O., Anisimov D. I., Marchenko I. A., Panteleyev V. I. (2017). Solar radiation imitators for thermal-vacuum tests of the spacecraft. Sib. Sci. and Technol. J., 18, № 2, 323-327 [in Russian].

3. Bykov A. P., Androsov A. P., Piganov M. N. (2019). Thermal-vacuum tests of a spacecraft components technique. Qual. and Reliability of Complex Systems, 3 (27), 78-83.
https://doi.org/10.21685/2307-4205-2019-3-9 [in Russian].

4. Vorobyov L. Y., Dekusha L. V., Kovtun S. I. (2016). New models of heat flow sensors for systems for monitoring and diagnostics of energy supply. Industrial Heat Engineering, 38, № 5, 86-97 [in Ukrainian].
https://doi.org/10.31472/ihe.5.2016.10

5. Gavrilov R. V. (2004). Spacecraft thermal-vacuum tests bench. Space Sci. and Technol., 10, № 5/6, 42-46 [in Ukrainian].

6. Gavrilov R. V., Kislov A. M., Melenevskiy Yu. A., Tserkovnyy A. I. (2004). Earth radiation imitator for thermal-vacuum tests of spacecrafts. Space Sci. and Technol., 10, № 5/6, 35-38 [in Russian].

7. Gavrilov R. V., Kislov A. M., Romanenko V. G., Fenchenko V. M. (2004). TRASSA software for spacecrafts thermal modes calculations. Space Sci. and Technol., 10, № 4, 3-16 [in Russian].

8. Dvirnyy G. V., Shevchuk A. A., Dvirnyy V. V., Yelfimova M. V., Krushenko G. G. (2018). LED-based solar radiation imitator for the ground-based tests of spacecrafts. Analysis of the possibility of production. Sib. Sci. and Technol. J., 19, № 2, 271-280 [in Russian].
https://doi.org/10.31772/2587-6066-2018-19-2-271-280

9. Zarubin V. S. (1978). Temperature fields in the design of aircraft (calculation methods). Mosсow: Mechanical engineering [in Russian].

10. Kozelkin V. V., Usol'tsev I. F. (1985). Fundamentals of infrared technology. Mosсow: Mechanical engineering [in Russian].

11. Kozlov L. V., Nusinov M. D., Akishin A. I. (1971). Modeling of thermal modes of the spacecraft and its environment. Mosсow: Mechanical engineering [in Russian].

12. Kolchanov I. P. (2015). Mathematical simulation of spacecrafts thermal-vacuum testing using cryo-shields. Herald of B. C. Bowman Moscow State Technical University. Faculty of Mechanical engineering, № 1, 57 - 64 [in Russian].

13. Krat S. A. (2017). Heat receiver FOA020 as an alternative means of controlling illumination during thermal vacuum testing of spacecraft. Reshetnev readings. Control and testing of rocket and space technology. Krasnoyarsk: Sib. state aerospace un-t, 340-342 [in Russian].

14. Krat S. A., Filatov A. A., Khristich V. V. (2010). Thermal-vacuum tests of a spacecraft: creation of a modern high-pressure gas-discharge lamps based solar emission simulator. Herald of M. F. Reshetnev Siberian Science and Technology State University, 2 (28), 257-259 [in Russian].

15. Krat S. A., Filatov A. A., Khristich V. V. (2011). Scheme for summing light fluxes from a set of gas discharge lamps for a solar radiation Imitator. J. Opt., 11, 66-72 [in Russian].
https://doi.org/10.1364/JOT.78.000739

16. Mikheyev S. V. (2017). Fundamentals of infrared technology. Saint-Petersburg: ITMO University.

17. The model PTP-1B.18.2.1.11.D.00.0.56.00.0-DSTU 3756-98 heat flux transducer. Оperation manual. 2020. [in Ukrainian].

18. Poshtarenko Yu. A., Rassamakin B. M., Sidorenko Yu. M., Khominich V. I., Shevchenko M. D. (2020). Research and testing experimental thermovacuum stand TVK-2,5. Space Sci. and Technol., 26,№ 6, 23-26 [in Ukrainian].
https://doi.org/10.15407/knit2020.06.023

19. Rassamakin B. M., Dusheiko M. G., Baiskov N. F., Ostapchuk S. V., Laush A. G., Lanevsky E. V., Khominich V. I., Melnik R. S. (2019). Nanosatellites of the POLYITAN series: test results and development plans. Scientific work of the X International Scientific Conference "Functional foundations of nanoelectronics",

16-21 Sept. 2019. List of scientific works. Kharkov- Odessa, 164-173 [in Russian].

20. Rassamakin B. M., Rogachоv V. A., Khairnasov S. M., Petrov Yu. V. (2009). Experimental and numerical studies of thermal regimes of a microsatellite. Energy: economics, technology, ecology, 2 (25), 36-42 [in Russian].

21. Rassamakin B. M., Rogachоv V. A., Khairnasov S. M., Khominich V. I., Grenyuk E. I. (2008). Investigation of thermal modes of operation of optoelectronic devices of the Sich-2 (MC2-8) spacecraft in the TVK-2. 5 thermal vacuum chamber. IX-th Int. conf. "Modern information and electronic technologies", 19-23 May. Odessa, 43. [in Russian].

22. Rassamakin B. M., Rogachоv V. A., Khairnasov S. M., Khominich V. I., Grenyuk E. I. (2008). Thermal vacuum tests of optical-electronic devices of the MS-2-8 spacecraft. Technol. and design in electronic equipment, 4 (76), 42-46 [in Russian].

23. Rassamakin B. M., Rogachev V. A., Khominich V. I., Petrov Yu. V., Khairnasov S. M. (2001). Thermal tests of a small spacecraft MS-1-TK-TV in the TVK-2.5 simulator Sat. Proceedings of the First Ukrainian Conference on Advanced Space Research. Kiev, 184-193 [in Russian].

24. Rassamakin B. M., Rogachоv V. A., Khominich V. I., Petrov Yu. V., Khairnasov S. M. (2002). Experimental modeling of thermal regimes of small-sized spacecraft and their external heat flows. I. Thermovacuum installation TVK-2.5. Space Sci. and Technol., 8, № 1, 37-41 [in Russian].
https://doi.org/10.15407/knit2002.01.037

25. Rassamakin B. M., Rogachоv V. A., Khominich V. I., Petrov Yu. V., Khairnasov S. M. (2002). The results of thermovacuum tests of the model of the microsatellite type MS-1-TC-TV. Space Sci. and Technol., 8, № 4, 3-10 [in Russian].
https://doi.org/10.15407/knit2002.04.003

26. Rassamakin B. M., Rogachоv V. A., Khairnasov S. M., Markhai S. M. (2009). Modeling of thermal modes of a microsatellite. Scientific news of NTUU "KPI", 5, 45-53 [in Ukranian].

27. Heat receiver of total heat flux FOA 020 (1981) Technical description and operating instructions. BY2. 825. 020 TO [in Russian].

28. ECSS-E-ST-10-03C. Entered into force from 06.12.2012. European Community standard for space standardization. Space design: Tests. ECSS ESA-FSTEC Secretariat, Standards and Requirements Division. Nordvik, The Netherlands.