Biodiversity estimation technique using medium spatial resolution hyperspectral imagery

1Stankevich, SA, 2Kozlova, AO
1State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine», Kyiv, Ukraine
2State institution «Scientific Centre for Aerospace Research of the Earth Institute of Geological Science National Academy of Sciences of Ukraine», Kyiv, Ukraine
Kosm. nauka tehnol. 2007, 13 ;(4):025-039
https://doi.org/10.15407/knit2007.04.025
Publication Language: Ukrainian
Abstract: 
We propose a technique for terrain biodiversity estimation which is based on medium spatial resolution hyperspectral satellite imagery. The technique makes allowances for ecological factor influence on biodiversity spatial distribution. Our results of biodiversity estimation for the Crimean peninsula south-west part by fuzzy-logic model is presented.
Keywords: biodiversity, ecological factor, satellite imagery
References: 
1. Atlas. Autonomous Republic of Crimea: Electronic version 4.1. Developers: Institute of Geography of the NAS of Ukraine; V.I. Vernadsky Taurida National University; JSC "Institute of advanced technologies" (2004) [in Ukrainian].
2. Biological and Landscape Diversity of Crimea: Problems and Perspectives. In: Questions of Crimea development. Science-practical discussion analytic collection, Is. 11, 180 p. (SONAT, Simferopol, 1999) [in Russian].
3. Development priorities: A new approach to the conservation of biodiversity in the Crimea. The results of the program "Assessment of the need to preserve biodiversity in the Crimea", carried out with the assistance of the Biodiversity Support Programme BSP, 257 p. (Washington, 1999) [in Russian].
4. Geography and Monitoring of Biodiversity, 432 p. (NUMTs, Moscow, 2002) [in Russian].
5. Didukh Ya. P. Plant cover of the Crimean Mountains (structure, dynamics, evolution, conservation), 253 p. (Naukova Dumka, Kiev, 1992) [in Russian].
6. Didukh Ya. P., Shelyag-Sosonko Yu. R. The state reserve "Cape Martyan". (Kiev, 1985) [in Russian].
7. Didukh Ya. P., Shelyag-Sosonko Yu. R. Yalta State Mountains and Forests Reserve. (Kiev, 1980) [in Russian].
8. Dulitsky A. I. Biodiversity of the Crimea: Mammals. History, Status, Conservation, Outlook, 208 p. (SONAT, Simferopol, 2001) [in Russian].
9. Kiselev A. N. Evaluation and mapping of biodiversity (Primorye region). Geobotanicheskoe kartografirovanie, 3, 3—15 (2000) [in Russian].
10. Kriksunov L. Z. Handbook on the  Foundations of Infrared Equipment, 400 p. (Sov. Radio, Moscow, 1978) [in Russian].
11. Kruglov V. V., Dli M. I. Intelligent information systems: computer support for fuzzy logic and fuzzy inference systems, 254 p. (Fizmatlit, Moscow, 2002) [in Russian].
12. Pianka E. R. Evolutionary Ecology, Transl. from Eng., Ed. by M. S. Gilyarov, 400 p. (Mir, Moscow, 1981) [in Russian].
13. Popov M. O., Stankevich S. A., Kozlova A. O. Improved classification procedure of multispectral airborne and space-borne images for estimation of biodiversity in the North Black Sea region of Ukraine. In: Fundamental research of the most important problems of the natural sciences on the basis of integration processes in education and science: Intern. Sci. Conf.: Abstracts, 82—83 (NPC JeKOSI-Gidrofizika, Sevastopol, 2006) [in Ukrainian].
14. Protasov A. A. Biodiversity and Its Assessment. Conceptual Diversicology, 107 p. (In-t gidrobiologii, Kiev, 2002) [in Russian].
15. Sakhats’kyi O. I. The use of satellite data in solving the problems of water exchange in geosystems. Reports of the National Academy of Sciences of Ukraine, No. 4, 118—126 (2006) [in Ukrainian].
16. Stankevich S. A. The Statistical Models of Aerospace Monitoring Objects Classes Separation by Digitals Images. In: Actual Problems of Military Ecology: Proc. of Sci. Conf., 76—81 (NRC DTMS of Ukraine, Kiev, 2004) [in Ukrainian].
17. Stankevich S. A., Kozlova A. A. Specifics of Shannon Diversity Index Calculation by Results of Aerospace Images Statistical Classification. Scientific Notes of Taurida National V.I. Vernadsky University, 19 (58), No. 2, 144— 150 (2006) [in Ukrainian].
18. Whittaker R. H. Communities and Ecosystems, Transl. from Eng., 328  p. (Progress, Moscow, 1980) [in Russian].
19. Sheliag-Sosonko Yu. R., Dubyna D. V., Vakarenko L. P., et al. Conservation and non-exhausting use of the biodiversity of Ukraine: State and perspectives, 246 p. (Himdzhest, Kyiv, 2003) [in Ukrainian].
20. ASTER Higher-Level Product User Guide, 80 p. (California Institute of Technology, Pasadena, 2001).
21. Bhogal A. S., Goodenough D. G., Chen H., et al. Automated Methods for Atmospheric Correction and Fusion of Multispectral Satellite Data for National Monitoring. Proc. International Geoscience and Remote Sensing Symp. IGARSS02, 1316—1319 (IEEE, Toronto, 2002).
https://doi.org/10.1109/IGARSS.2002.1026101
22. Bouman B. A. M. Accuracy of Estimating the Leaf Area Index from Vegetation Indices Derived from Crop Reflectance Characteristics. Int. J. Remote Sens., 16, 3069—3084 (1992).
https://doi.org/10.1080/01431169208904103
23. Clark R. N., Swayze G. A., Wise R., et al. USGS Digital Spectral Library splib05a. USGS Open File Report 03-395, 1340 p. (2003).
24. Dubayah R., Loechel S. Modeling Topographic Solar Radiation Using GOES Data. J. Appl. Meteorol., 36 (2), 141 — 154 (1997).
https://doi.org/10.1175/1520-0450(1997)036<0141:MTSRUG>2.0.CO;2
25. Huete A., Kim H.-J., Miura T. Scaling Dependencies and Uncertainties in Vegetation Index — Biophysical Retrievals in Heterogeneous Environments. Proceedings of the IGARSS'05 Symposium, 105— 114 (IEEE, Seoul, 2005).
https://doi.org/10.1109/IGARSS.2005.1526808 
26. Huete A. R., Liu H., van Leeuwen W. J. D. The Use of Vegetation Indices in Forested Regions: Issues of Linearity and Saturation. Proceedings of the IGARSS'97 Symposium, 1—3 (IEEE, Singapore, 1997).
https://doi.org/10.1109/IGARSS.1997.609169 
27. Lee K.-S., Cohen W. B., Kennedy R. E., et al. Hyper- spectral versus Multispectral Data for Estimating Leaf Area Index in Four Different Biomes. Remote Sens. Environ., 91, 508—520 (2004).
https://doi.org/10.1016/j.rse.2004.04.010 
28. Lillesand T. M., Kiefer R. W., Chipman J. W. Remote Sensing and Image Interpretation, 784 p. (John Wiley, Hoboken, 2004).
29. Limaye A. S., Crosson W. L., Laymon C. A. Estimating Accuracy in Optimal Deconvolution of Synthetic AMSR-E Observations. Remote Sens. Environ., 100, 133—142 (2006).
https://doi.org/10.1016/j.rse.2005.10.008
30. Rodriguez E., Morris C. S., Belz J. E., et al. An Assessment of the SRTM Topographic Products / Jet Propulsion Laboratory Technical Report D-31639, 144 p. (JPL, Pasadena, 2005).
31. Tovar-Pescador J., Pozo-Vazquez D., Ruiz-Arias J. A., et al. On the Use of the Digital Elevation Model to Estimate the Solar Radiation in Areas of Complex Topography. Meteorol. Appl., 13 (3), 279—287 (2006).
https://doi.org/10.1017/S1350482706002258
32. Turner W. Remote sensing for biodiversity and conservation. Trends Ecol. and Evol., 18 (6), 306— 314 (2003).
https://doi.org/10.1016/S0169-5347(03)00070-3
33. Wang Q., Adiku S., Tenhunen J., Granier A. On the Relationship of NDVI with Leaf Area Index in a Deciduous Forest Site. Remote Sens. Environ., 94, 244—255 (2005).
https://doi.org/10.1016/j.rse.2004.10.006

34. Wang X., Zhang Z. A Review: Theories, Methods and Development of Soil Moisture Monitoring by Remote Sensing. Geoscience and Remote Sensing Symposium IGARSS'05 Proceedings, Vol. 6, 4505—4507 (IEEE International, Seoul, 2005).
https://doi.org/10.1109/IGARSS.2005.1525922