GABA and glutamate: exosytosis and Na + – dependent release from the rat brain nerve terminals under extremal conditions

1Borisova, TA, 1Pozdnyakova, NG, 1Krisanova, NV, 2Himmelreich, NH
1Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
2O.V. Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2005, 11 ;(1-2):098-102
https://doi.org/10.15407/knit2005.01.098
Publication Language: Russian
Abstract: 
It is demonstrated for the first time that hypcrgravity stress affects nerve signal transmission, in particular, the release of GABA (the most common inhibitory neurotransmitter) and L-[14 С] glulamate (predominant excitatory neurotransmitter). A comparative analysis of release of GABA and glutamate from the rat brain synaptosomes (nerve terminals) shows that exposure of animals to hypcrgravity loading (10G for 1 hour) evokes oppositely directed alterations in inhibitory and excitatory signal transmission. Significant changes occurred in release of neurotransmitters induced by stimulating exocytosis with the agents, which depolarized nerve terminal plasma membrane. Depolarization-evoked Ca2+~-stimulated release was more abundant for GABA (7.2±0.54 % and 11.74 ± 12 % of total accumulated labclfor control and hypergravity, respectively, (P ≤ 0.05)) and was essentially less for glutamate (14.4±0.7 % and 6,2±1.9%, (P ≤ 0.05)) after exposure of animals to centrifuge induced artificial gravity.
References: 
1. Borisova T. A., Krisanova N. V., Himmelreich N. H. Artificial gravity and functional plasticity of nerve system L-[14C]- glutamate uptake by nerve terminals from rat cerebellum and cerebral hemispheres under hypergravity stress. J. Grav. Physiol., 9 (1), 25—26 (2002).
2. Borisova T., Krisanova N., Himmelreich N. Na -dependent glutamate efflux from rat brain synaptosomes under extremal condition. J. Grav. Physiol., 10 (1), 43—44 (2003).
3. Borisova T. A., Krisanova N. V., Himmelreich N. H. Exposure of animals to artificial gravity conditions leads to the alteration of the. glutamate release from rat cerebral hemispheres nerve terminals. Adv. Space Res., 33 (8), 1362— 1367 (2004).
https://doi.org/10.1016/j.asr.2003.09.039
4. Cotman C. W. Isolation of synaptosomal and synaptic plasma membrane fractions. Meth. Enzymol., 31, 445—452 (1974).
https://doi.org/10.1016/0076-6879(74)31050-6
5. Gegelashvili G., Schousboe A. High affinity glutamate transporters: regulation of expression and activity. Mol. Pharmacol., 52, 6—15 (1997).
https://doi.org/10.1124/mol.52.1.6
6. Gonzales M., Robinson M. Neurotransmitter transporters: why dunce with so many partners? Curr. Opinion in Pharmacol., 4, 30—35 (2004).
https://doi.org/10.1016/j.coph.2003.09.004
7. Guillaume A. I., Osmont D., Gaffie D., et al. Physiological implications of mechanical effects of +Gz accelerations on brain structures. Aviat. Space and Environ. Med., 73 (3), 171 — 177 (2002).
8. Jabaudon D., Shimamoto K., Yasuda-Kamatani Y., et al. Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc. Natl. Acad. Sci. USA, 96, 8733—8738 (1999).
https://doi.org/10.1073/pnas.96.15.8733
9. Jensen J. B., Pickering D. S., Schousboe A. Depolarization-induced release of (3H) D-aspartate from GABAergic neurons caused by reversal of glutamate transporters. Int. J. Dev. Neurosci., 18, 309—315 (2000).
https://doi.org/10.1016/S0736-5748(99)00099-4
10. Larson E., Howlett B., Jagendorf A. Artificial reductant enhancement of the Lowry method for protein determination. Anal. Biochem., 155, 243—248 (1986).
https://doi.org/10.1016/0003-2697(86)90432-X
11. Levi G., Raiteri M. Carrier-mediated release of neurotransmitters. Trends Neurosci., 16, 415—419 (1993).
https://doi.org/10.1016/0166-2236(93)90010-J
12. Lopez E., Oset-Gasque M., Figueroa S., et al. Calcium Channel types involved in intrinsic amino acid neurotransmitters release evoked by depolarizing agents in cortical neurons. Neurochemistry International, 39, 283—290 (2001).
https://doi.org/10.1016/S0197-0186(01)00035-3
13. Sanford G. L., Harris-Hooker S., Lui J., et al. Influence of changes in gravity on the response of lung and vascular cells to ischemia/reperfusion in vitro. J. Grav. Physiol., 6 (1), 27—8 (1999).
14. Shahed A. R., Son M., Lee J. C., Werchan P. M. Expression of c-fos, c-jun and HSP70 mRNA in rat brain following high acceleration stress. J. Grav. Physiol., 3 (1), 49—56 (1996).
15. Sun X. Q., Zhang L. F., Wu X. Y., Jiang S. Z. Effect of repeated +Gz exposures on energy metabolism and some ion contents in brain tissues of rats. Aviat. Space and Environ. Med., 72 (5), 422—426 (2001).
16. The Neurolab Spacelab Mission: Neuroscience Research in Space. NASA SP. (2003).

17. Vizi E. S. Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. Pharmacol. Revs., 52 (1), 63—89 (2000).