Ionospheric disturbances excited by the lithospheric gas source of acoustic gravity waves before eartquakes

1Gotynyan, OE, 1Ivchenko, VM, 2Rapoport, Yu.G, 3Parrot, M
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Kyiv, Ukraine, Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
3LPCE/CNRS, ЗА Avenue de la Recherche Scientifique, Orleans, France
Kosm. nauka tehnol. 2002, 8 ;(Supplement2):089-105
https://doi.org/10.15407/knit2002.02s.089
Publication Language: English
Abstract: 
Many satellite and ground observations point at anomalous ionospheric phenomena associated with seismic activity. It was shown that some ionospheric effects before earthquakes can be explained by acoustic gravity waves (AGW) influence on the ionosphere. One of possible sources of these waves can be greenhouse effect gases penetrating from the litho-sphere to near ground atmospheric layer. An accurate numerical model of a lithospheric gas source, excitation and propagation of AGW field to the near-source region with altitudes up to the ionospheric F region is used. The model includes effective boundary conditions on the ground level and takes into account reactive (non-propagating) AGW modes. Numerical convergence is proven. Presence of reactive modes leads to a change of AGW velocity amplitude at altitude 250 km by an order of value and in 4 times for AGW with periods 15 min. and 1 hour, respectively. Electron concentration disturbances in the ionospheric F-regfion before earthquakes can reach a value of the order of few dozens percents for AGW with period 1 hour, which agrees with the results of observations. Ionospheric response to AGW, namely, relative change of electron concentration at altitude 250 km reaches a maximum for AGW with period equal to 73 min for a given (bell-shaped) spatial dstribu-tion of lithospheric gas source with width 100 km. Spatial distribution of electron concentration disturbances are non-symmetrical in the oblique geomagnetic field. «Twin-source» of AGW in the lithosphere can pronounce itself in a splitting of spatial distribution of relative change of electron concentration.
References: 

1. Gladishev V. A., Fishkova L. M. Optical research of seismoactivity effects of the ionosphere. In: Hayakawa M., Fujinawa Y. (Eds.) Electromagnetic phenomena related to earthquake prediction, 375-380 (TERRAPUB, Tokyo, 1994).
2. Porter H. S., Silverman S. M., Tuan T. F. On the Behavior of Airglow Under the Influence of Gravity Waves. J. Geophys. Res., 79 (25), 3831-3833 (1974).
https://doi.org//10.1029/JA079i025p03827
3. Toroselidze T. I. Analysis of aeronomy problems using radiation of higher atmosphere ("Mecniereba" Publ., Tbilisy, Georgia, 1991) [in Russian].
4. Parrot M. Statistical studies with satellite observations of seismogenic effects. In: Hayakawa M. (Ed.) Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, 685-695 (TERRAPUB, Tokyo, 1999).
5. Gornyj V. I., Sal'man A. G., Tronin A. A., Shylin B. V. Leaving infrared radiation - of seismic activity. DAN USSR, 301, 67-69 (1988) [in Russian].
6. Gohberg M. B., Nekrasov A. K., Shalimov S. L. To the influence of nonstable release of green-effect gases in seismically active regions on the ionosphere. Physics of the Earth [Fizika Zemli], No. 8, 52-55 (1996) [in Russian].
7. Hooke W. H. Ionospheric irregularities produced by internal atmospheric gravity waves. J. Atmosph. Terr. Phys., 30, 795-823 (1968).
https://doi.org//10.1016/S0021-9169(68)80033-9
8. Molchanov O. A., Hayakawa M., Rafalsky V. A. Penetration characteristics of electromagnetic emission from an underground seismic source into the atmosphere, the ionosphere, and magnetosphere. J. Geophys. Res., 100A, 1691 (1995).
https://doi.org//10.1029/94JA02524
9. Grimalsky V. V., Kremenetsky I. A., Rapoport Yu. G. Excitation of electromagnetic waves in the lithosphere and their penetration into ionosphere and magnetosphere. J. Atmospheric Electricity, 19 (2), 101-117 (1999).
10. Grimalsky V. V., Kremenetsky I., Cheremnykh O. K., Rapoport Yu. G. Spatial and frequency filtration properties of ULF EM radiation of lithospheric origin in the lithosphere-ionosphere-magnetosphere system. In: Hayakawa M., and Molchanov O. A. (Eds.) Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, 363-370 (TERRUPUB, Tokyo, 2002).
11. Martinenko S. I., Fuks I. M., Shubova R. S. Ionospheric electric-field influence on the parameters of VLF signals connected with nuclear accidents and earethquakes. J. Atmospheric Electrricity, 16 (3), 259-269 (1996).
12. Grimalsky V. V., Hayakawa M., Ivchenko V. N., et al. Penetration of an electrostatic field from the lithosphere into the ionosphere and its effect on the D-region before earthquakes. JASTP (2002; In press).
13. Gotynyan O. E., Ivchenko V. M., Rapoport Yu. G. Model of the internal gravity waves excited by lithospheric greenhouse effect gases. Kosm. nauka tehnol. Dodatok, 7 (2), 26-33 (2001).
https://doi.org//10.15407/knit2001.02s.026
14. Gohberg M. B., Shalimov S. L. Lithospheric-ionospheric coupling and its modeling Russian. J. Earth Sciences, 2 (2) (2000).
https://doi.org//10.2205/2000ES000032
15. Molchanov O. A., Hayakawa M., Afonin V. V., et al. Possible influence of siesmicity by gravity waves on the ionospherivc equatorial anomaly from data of IK-24 satellite 1. Search for idea of seismo-ionosphere coupling. In: Hayakawa M., and Molchanov O. A. (Eds) Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, 287-296 (TERRUPUB, Tokyo, 2002).
16. Molchanov O. A., Hayakawa M., Afonin V. V., et al. Possible influence of siesmicity by gravity waves on the ionospherivc equatorial anomaly from data of IK-24 satellite. 2. Equatorial anomaly and small-scale ionospheric turbulence. In: Hayakawa M., and Molchanov O. A. (Eds.) Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, 287-296 (TERRUPUB, Tokyo, 2002).
17. Linkov E. M., Petrova L. N., Osipov K. Seismogravity oscillation of Earth and connected with them ionospheric disturbances. DAN USSR, 5, 1095-1098 (1990) [in Russian].
18. Hines C.O. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys., 38, 1441-1481 (1960).
https://doi.org//10.1139/p60-150
19. Molchanov O. A., Hayakawa M. Subionospheric VLF signal perturbations possibly related to earthquakes. J. Geophys. Res., 103 (A8), 17489-17504 (1998).
https://doi.org//10.1029/98JA00999
20. Popov K. V., Liperovskiy V. A., Alimov O. A. Modification of spectra of night ionospheric F2 layer density variations during the periods of earthquake preparation. Physics of the Earth, No. 1, 93-96 (1996) [in Russian].
21. Ossakov S. Spread-F theories - a review. J. Atmospheric and Terrestr. Phys., 43 (5-6), 437-452 (1981).
https://doi.org//10.1016/0021-9169(81)90107-0
22. McDaniel R. D., Hysell D. L. Models and DE observations of internal-regime irregularities in equatorial spread F. J. Geophys. Res., 102 (A10), 22,233-22,246 (1997).
https://doi.org//10.1029/97JA02038
23. Liperovsky V. A., Meister C. V., Popov K. V., et al. On the time scales of some seismo-ionospheric effects. In: Hayakawa M., and Molchanov O. A. (Eds.) Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, 325-327 (TERRUPUB, Tokyo, 2002).
24. Meister C. V., Liperovskaya E. V., Molchanov O. A., et al. To the question of spatial scales of seismo-ionospheric effects. In: Hayakawa M., and Molchanov O. A. ( Eds.) Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, 329-331 (TERRUPUB, Tokyo, 2002).
25. Kendall P. C., Pickering W. M. Magnetoplazma diffusion at F2-region altitudes. Planet Space Sci., 15, 825-833 (1967).
https://doi.org//10.1016/0032-0633(67)90118-3
26. Genkin L. G., Eruhimov L. M., Myasnikov E. N., Shvarts M. M. To the question of generation and buoyancy of isothermal ionospheric and chromospheric"bubbles". Izvestiya Vuzov. Radiofizika, 30, 567-577 (1987) [in Russian].
https://doi.org//10.1007/BF01035291
27. Gershman B. N. Dynamics of ionospheric plasma. (Nauka, Moscow, 1974) [in Russian].
28. Huang C. S., Kelley C. Nonlinear evolution of equatorial spread of F2. Gravity wave seeding of Rayleigh-Taylor instability. J. Geophys. Res., A101, 293-302 (1996).
https://doi.org//10.1029/95JA02210
29. Sazonov S. V. Nonlinear oscillating regime of electromagnetic disturbances in equatorial region F. Geomagnetism and Aeronomy, 30, 440-445 (1990).
30. Miller C. A. Electrodynamics of midlatitude spread F 2. A new theory of gravity wave electric fields. J. Geophys. Res., 102, 11.533-11.538 (1997).
https://doi.org//10.1029/96JA03840
31. Huang C.-S., Miller C. A., Kelley M. C. Basic properties and gravity wave initiation of the midlatitude F region instability. Radio Sci., 29, 395-405 (1994).
https://doi.org//10.1029/93RS01669