Methods of allowing for earth's atmosphere influence in space geodesy and navigation

1Prokopov, AV
1National University of Civil Protection of Ukraine, Kharkiv, Ukraine
Kosm. nauka tehnol. 2001, 7 ;(4):163–168
Section: Space Navigation and Communications
Publication Language: Ukrainian
An analytical surway of literature referring to the methods of allowing for Earth's atmosphere influence on results of coordinate and time determinations is given. These determinations are carried out by modern space geodesy and navigation measuring systems using the electromagnetic waves of radio and optical bands.
Keywords: measuring systems, navigation, space geodesy
1.  Andrianov V. A., Mosin E. L., Smirnov V. M. Evaluation of the effect of liquid-droplet atmospheric formations on the magnitude of the tropospheric error of radio measurements of the distance and velocity of artificial earth satellites. Radiotekhnika i Elektronika, is. 3, 555—558 (1992) [in Russian].
2. Hofmann-Wellenhof B., Lichtenegger H., and Collins J. Global Positioning System. Theory and Practice, Transl. from Eng., Ed. by Ya. S. Yatskiv, 380 p. (Nauk.dumka, Kyiv, 1996) [in Ukrainian].
3. Kravtsov Yu. A., Feizulin Z. I., Vinogradov A. G. Propagation of radio waves through the Earth's atmosphere, 224 p. (Radio i svyaz', Moscow, 1983) [in Russian].
4.  Mironov N. T., Prokopov A. V., Remaev E. V. Investigation of a new method for determination of atmospheric refractivity corrections in satellite laser ranging. Kinematika Fiz. Nebesn. Tel, 13 (4), 89—96 (1997) [in Russian].
5. Prilepin M. T. Defining of air refractive index at measuring distances by light modulating range finders. Izvestiya vuzov. Geodezia i aerofotosjomka, No. 2, 123—132 (1957) [in Russian].
6. Prokopov A. V. Integral methods of the ray theory in the problems of studying and taking into account the influence of the terrestrial atmosphere on the accuracy of astronomical and geodetic observations. In: Metrologija vremeni i prostranstva: Tr. 5 Rossijskogo simp., 212— 217 (IMVP GP VNIIFTRI, Mendeleevo, 1994) [in Russian].
7.  Prokopov A. V., Remaev E. V. Increasing the Accuracy of Astronomical Refraction Determination From Surface Meteorological Data. Kinematika Fiz. Nebesn. Tel, 12 (3), 37—43 (1996) [in Russian].
8.  Prokopov A.V., Remayev E.V. Refraction limitations of precision of two-wave satellite laser ranging. Ukrainian Metrology Magazine, Is. 2, 5—9 (2000) [in Russian].
9.  Beutler G., Bauersima I., Gurtner W., et al. Atmospheric Refraction and Other Important Biases in GPS Carrier Phase Observations. In: Atmospheric Effects on Geodetic Space Measurements, Ed. by F. K. Brunner. Monograph 12, School of Surveying, 15—43 (The University of New South Wales, Kensington, Australia, 1988).
10.  Boer A., Hessels U. Two Color Laser Ranging with TIGO SLR System. Status and First Results. Presented at the 11 International Workshop on Laser Ranging, 21—25 September (Deggendorf, Germany, 1998).
11.  Eissfeller B., Hein G. W., Winkel J. C., et al. Requirements on the Galileo Signal Structure. ION GPS 2000, 19-22 September 2000, 1772—1781 (Salt Lake City, UT, 2000).
12.  Elgered G. Refraction in the troposphere. Proc. of Symposium on Refraction of Transatmospheric Signals in Geodesy, Eds J. C. de Munck, T. A. Th. Spoelstra. The Hague, The Netherlands, 19—22 May, Netherlands Geodetic Commission, Publications on Geodesy, Delft, The Netherlands, N 36, New Series, 13—19 (1992).
13.  Elgered G. Tropospheric radio-path delay from ground-based microwave radiometry. Atmospheric Remote Sensing by Microwave Radiometry, M. A. Janssen, 215—258 (John Wiley and Sons, 1993).
14.  Hartman G. K., Leitinger R. Range errors due to ionospheric and tropospheric effects for signal frequencies above 100 MHz. Bulletin Geodesique, 58, 109—136 (1984).
15.  Herring T. A. Modeling atmospheric delays in the analysis of space geodetic data. Proc. of Symposium on Refraction of Transatmospheric Signals in Geodesy, Eds J. C. de Munk, T. A. Th. Spoelstra, The Hague, The Netherlands, 19-22 May, Netherlands Geodetic Commission, Publications on Geodesy, Delft, The Netherlands, N 36, New Series, 157—164 (1992).
16.  Herring T. A., Davis J. L., Shapiro I. I. Geodesy by radio interferometry: The application of Kalman filtering to the analysis of very long baseline interferometry data. J. Geophys. Res., 95 (B8), 12561 — 12581 (1990).
17.  Hopfield H. S. Two-quartic tropospheric refractivity profile for correcting satellite data. J. Geophys. Res., 74 (18), 4487—4499 (1969).
18.  IERS Conventions. In: IERS Technical Note 21, D. D. McCarthy. (U.S. Naval Observatory, 1996).
19.  Ifadis I. The atmospheric delay of radio waves: modeling the elevation dependence on a global scale. Technical Report N 38L, School of Electrical and Computer Engineering. (Chalmers University of Technology, Goeteborg, Sweden, 1986).
20.  Jackson D. M., Gasiewski A. J. Millimeter-wave radiometric observations of the troposphere: a comparison of measurements and calculations based on radiosonde and Raman lidar. IEEE Transactions on Geoscience and Remote Sensing, 33 (1), 3—14 (1995).
21.  Lanyi G. Tropospheric delay effects in radio interferometry. The Telecommunications and Data Acquisition Progress Report 42—78, 152—159 (Jet Propulsion Laboratory, Pasadena, Calif., 1984).
22.  Linfield R. P., Teitelbaum L. P., Skjerve L. J., et al. A Test of water vapor radiometer-based troposphere calibration using VLBI observations on a 21-kilometer baseline. The Telecommunications and Data Acquisition Progress Report 42—122, 12—31 (Jet Propulsion Laboratory, Pasadena, Calif., 1995).
23.  Marini J. W., Murray C. W. Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees. NASA-TM-X-70555. (Coddard Space Flight Center, Greenbelt, Md., 1973).
24.  Mendes V. B. Modeling the neutral-atmosphere propagation delay in radiometric space techniques. Ph. D. dissertation, Department of Geodesy and Geomatics Engineering Technical Report N 199, 353 p. (University of New Brunswick, Fredericton, New Brunswick, Canada, 1999).
25.  Niell A. E. Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res., 101 (B2), 3227—3246 (1996).
26.  Prokopov A., Remayev Ye. New approach to the problem of determination of atmospheric refractivity corrections for space geodetic applications. Reports on Geodesy, No. 9 (55), 43—48 (2000).

27.  Saastamoinen J. Contributions to the theory of atmospheric refraction. In three parts. Bulletin Geodesique, No. 105, 279—298; No. 106, 383—397; No. 107, 13—34 (1973).