Morphological plasticity of mosses as an adaptive response to gravity

1Lobachevska, OV, 1Kyyak, NYa., 1Khorkavtsiv, Ya.D
1Institute of Ecology of the Carpathians of the National Academy of Sciences of Ukraine, L’viv, Ukraine
Space Sci. & Technol. 2025, 31 ;(6):063-079
https://doi.org/10.15407/knit2025.06.063
Publication Language: Ukrainian
Abstract: 
In the evolutionary context of life emergence on Earth, bryophytes represent one of the most ancient groups of terrestrial plants,
while gravity has remained a constant ecological factor influencing moss development — from spore germination to gametophytic turf and sporophyte formation. Tropisms in mosses have been studied at the cellular level due to the unique integration of perception and growth stimuli within the single apical cell of the protonema. It has been established that the polarization of unicellular spore seedlings is a gravity-dependent adaptive function that enables the plant to orient toward the illuminated soil surface.
            The orientation of spore germination across moss species is functionally dependent on both life strategy and gravity as a
directional growth vector. It has been determined that gravisensitivity of bryophytes is species-specific, varies across different
stages of gametophyte and sporophyte differentiation, and is influenced by environmental conditions. The interaction between light and gravity in regulating photo-/gravitropism and gravimorphoses in bryophytes has also been elucidated. While gravity exerts a constant polarizing influence, light is a vital factor for plants and an essential prerequisite for phototropism and photomorphogenesis. A competitive interaction between photo- and gravitropism has been confirmed, along
with the identification of minimal threshold light intensities that suppress gravity perception. As a dominant factor, light inhibits
the gravitropic response, while gravity influences the sensory system of photoreceptors. The mutual effect of photo- and gravitropism shapes the morphology of both gametophyte and sporophyte, influences the development of specific gravimorphoses, and the formation of habitus in the natural environment. A manifestation of gravimorphosis is the formation of buds at the apical zone of protonemal stolons, introducing for the first time the polarizing action of gravity as a morphogenetic factor that transforms one-dimensional growth into three-dimensional growth. The adaptive significance of gravimorphoses is evidenced by gravity-dependent morphological forms of mosses found in extreme environments, such as dendrites in Weissia condensa (Voit) Lindb. and bulbils in Ptychostomum pseudotriquetrum (Hedw.) J. R. Spence.
Keywords: bryophytes, clinorotation, gravimorphoses, gravisensitivity, microgravity, morphological plasticity
References: 
1. Grodzinsky D. M. (2013). Adaptive strategy of physiological processes of plants. Kyiv: Naukova Dymka, 204 р.
 
2. Demkiv O. T., Sytnik K. M. (1985). Morphogenesis of Archegoniates. Kyiv: Naukova Dymka, 204 p.
 
3. Demkiv O. T., Khorkavtsiv Y. D., Kardash A. R., Chaban C. I. (1997). The interaction of light and gravity in growth
movements of protonemata mosses. Fyzyologia Rastenyi, 44, № 2, 205-211.
 
4. Demkiv O. T., Kordyum E. L., Khorkavtsiv Ya. D., Tairbekov M. G. (2006). Microgravity is the experimental basis for understanding 
of the peculiarities of plant morphogenesis in the gravitational field. Space Sci. Technol., 12, № 5/6, 30-35.
 
5. Kyyak N. Y., Lobachevska О. В., Khorkavtsiv Y. D. (2021). Morpho-physiological reactions of gravisensitivity and adaptation
to UV irradiance of the moss Bryum caespiticium Hedw. from Antarctica. Space Sci. Technol., 27, № 5, 47-49.
 
6. Lazarenko A. C. (2001). Species Structure and Mechanisms of Species Formation of Mosses. Selected works. Lviv: Liha-Press,
231 p.
 
7. Lobachevska O. V. (2013). Bryophytes as a model for studying ecophysiological adaptation to environmental conditions. 
Chornomorski Bot. J., 10, № 1, 48-60.
 
8. Lobachevska O. V., Kyyak N. Ya., Khorkavtsiv Ya. D., Kit N. A. (2024). Gravisensitivity of mosses: the importance of gravitational
force in ontogenesis. Lviv, 236 p. 
https://nvd-nanu.org.ua
 
9. Lobachevska O. V., Khorkavtsiv Ya. D. (2014). Gravisensitivity in the moss ontogenesis. Space Sci. Technol., 20, № 5,
55-60.
https://doi.org/10.15407/knit2014.05.055
 
10. Pundyak O. I., Demkiv O. T., Khorkavtsiv Y. D., Bagrii B. B. (2002). Polarity of spore germination in Funaria hygrometrica
Hedw). Space Sci. Technol., 8, № 1, 96-100.
 
11. Khorkavtsiv Y. D., Kordyum E. L., Lobachevska O. V., Kyyak N. Y., Kit N. A. (2015). Branching of Ceratodon purpureus 
(Brid.) Hedw. protonemata effected under altered gravity conditions). Ukr. Bot. J., 72, № 6, 588-595.
 
12. Shevchenko G. Modeled microgravity impact on the cytoskeleton organization in Arabidopsis thaliana root cells. (2024).
Space Sci. Technol., 30, № 6, 52-57. 
https://doi.org/10.15407/knit2024.06.052
 
13. Awasthi V., Nath V., Asthana F. (2010). Effect of some physical factors on reproductive behavior of selected bryophytes. Int.
J. Plant Reproductive Biology, 2, № 2, 141-145.
 
14. Bennett T., Liu M., Aoyama T., Bierfreund N. M., Braun M., Coudert Y., Dennis R. J., O'Connor D., Wang X. Y., White
 
C. D. (2014). Plasma membrane targeted PIN proteins drive shoot development in a moss. Current Biology, 24, 1-10.
https://doi.org/10.1016/j.cub.2014.09.054
 
15. Bopp M. (1983). Development Physiology of Bryophytes. New Manual of Bryology. Ed. R. M. Schuster. Hattori Bot. Lab.,
Nichinan, Miyazaki, Japan, 1, 276-324.
 
16. Braun M., Bohmer M., Häder D. P., Hemmersbach R., Palme K. (2018). Gravitational Biology 1. Gravity sensing and
graviorientation in microorganism and plants. Springer Brief in Space Life Sciences. Eds. Ryuters G., Braun M. Springer,
Cham, Switzerland; Germany Aerospace Centre: Bonn, Germany, 134 p.
https://doi.org/10.1007/978-3-319-93894-3
 
17. Bünning E., Mohr H. (1955). Das Aktionspektrum des Lichteinflusses auf die Keimung von Farnsporen. Naturwissenschaften, 
42, 212 p.
https://doi.org/10.1007/BF00599221
 
18. Chaban Ch. I., Kern V. D., Ripetsky R. T., Demkiv O. T., Sack F. (1998). Gravitropism in caulonemata of the moss Pottia
intermedia. J. Bryology, 20, № 2, 287-299. 
https://doi.org/10.1179/jbr.1998.20.2.287
 
19. Correll M. J., Pyle T. P., Millar K. D. L., Sun J., Yao J., Edelmann R. E., Kiss J. Z. (2013). Transcriptome analyses 
of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Planta, 238, 519-533. 
https://doi.org/10.1007/s00425-013-1909-x
 
20. Coudert Y., Bell N. E., Edelin C., Harrison C. J. (2017). Multiple innovations underpinned branching form diversi cation
in mosses. New Phytologist, 215, 840-850. 
https://doi.org/10.1111/nph.14553
 
21. Cove D., Bezanilla M., Harries P., Quatrano R. (2006). Mosses as model systems for the study of metabolism and
https://doi.org/10.1146/annurev.arplant.57.032905.105338
 
development. Annu. Rev. Plant Biol., 57, 497-520. 
https://doi.org/10.1146/annurev.arplant.57.032905.105338
 
22. Cove D. J., Quatrano R. S. (2006). Agravitropic mutants of the moss Ceratodon purpureus do not complement mutants
having a reversed gravitropic response. Plant, Cell and Environment, 29, 1379-1387. 
https://doi.org/10.1111/j.1365-3040.2006.01519.x
 
23. Demkiv O., Kordyum E., Kardash O., Khorkavtsiv O. (1999). Gravitropism and phototropism in protonemata of the moss
Pohlia nutans (Hedw.) Lindb. Adv. Space Res., 23, № 12, 1999-2004. 
https://doi.org/10.1016/S0273-1177(99)00349-X
 
24. Demkiv O. T., Khorkavtsiv O. Ya., Pundiak O. I. (2003). Changes of protonemal cell growth related to cytoskeleton
organization. Cell Biol. Int., 27, № 3, 187-189. 
https://doi.org/10.1016/S1065-6995(02)00303-7
 
25. Glime J. M. (2017). Physiological Ecology. Bryophyte Ecology. Vol. 1. Ebook Sponsored by Michigan Technological
 
University and the International Association of Bryologists. Ed. J. M. Glime. Michigan Technological University, Houghton
MI USA. URL: http://www.bryoecol.mtu.edu/ (Last accessed: 21.07.2025).
 
26. Herranz R., Medina F. J. (2014). Cell proliferation and plant development under novel altered gravity environments. Plant
Biol., 1, № 16, 23-30.
https://doi.org/10.1111/plb.12103
 
27. Hoson T. (2014). Plant growth and morphogenesis under different gravity conditions: relevance to plant life in space. Life,
4, № 2, 205-216.
https://doi.org/10.3390/life4020205
 
28. Hurtado F., Estébanez B., Aragón P., Hortal J., Molina-Bustamante M., Medina N. G. (2022). Moss establishment
success is determined by the interaction between propagule size and species identity. Sci. Rep., 12, № 2, 20777. 
https://doi.org/10.1038/s41598-022-24354-8
 
29. Johnsson A, Solheim B. G. B., Iversen T.-H. (2009). Gravity amplifies and microgravity decreases circumnutations in
Arabidopsis thaliana stems: results from a space experiment. New Phytol., 182, 621-629. 
https://doi.org/10.1111/j.1469-8137.2009.02777.x
 
30. Kato H., Kouno M., Takeda M., Suzuki H., Ishizaki K., Nishihama R., Kohchi T. (2017). The Roles of the Sole Activator-
Type Auxin Response Factor in Pattern Formation of Marchantia polymorpha. Plant Cell Physiol., 58, № 10, 1642-1651.
https://doi.org/10.1093/pcp/pcx095
 
31. Kawamoto N., Morita M. T. (2022). Gravity sensing and responses in the coordination of the shoot gravitropic setpoint
angle. New Phytologist, 236, 1637-1654. 
https://doi.org/10.1111/nph.18474
 
32. Kern V. D., Sack F. D. (1999). Irradiance-dependent regulation of gravitropism by red light in protonemata of the moss
Ceratodon purpureus. Planta, 209, 299-307.
https://doi.org/10.1007/s004250050636
 
33. Kern V. D., Schwuchow J. M., Reed D. W., Nadeau J. A., Lucas J., Skripnikov A., Sack F. D. (2005). Gravitropic moss cells
default to spiral growth on the clinostat and in microgravity during spaceflight. Planta, 221, 149-157. 
https://doi.org/10.1007/s00425-004-1467-3
 
34. Kiss J. Z., Millar K. D., Edelmann R. E. (2012). Phototropism of Arabidopsis thaliana in microgravity and fractional gravity
on the International Space Station. Planta, 236, 635-645. 
https://doi.org/10.1007/s00425-012-1633-y
 
35. Kiss J. Z., Wolverton C., Wyatt S. E., Hasenstein K. H., van Loon J. J.W. A. (2019). Comparison of Microgravity Analogs to
Spaceflight in Studies of Plant Growth and Development. Front. Plant Sci., 10, 1-10, 1577. 
https://doi.org/10.3389/fpls.2019.01577
 
36. Kofler L. (1957). Croissance spiralée du protonema de Funaria hygrometrica (L.) Sibth. C. r. Acad. Sci., 245, 1823-1825.
 
37. Kordyum E. L., Belyavskaya N., Nedukha O. M., Palladina T. A., Tarasenko V. A. (1984). The role of calcium ions in
cytological effects of hypogravity. Adv. Space Res., 4, № 12, 23- 26.
 
38. Kumar N. S., Stevens M. H. H., Kiss J. Z. (2008). Plastid movement in statocytes of the arg1 (altered response to gravity)
mutant. Am. J. Bot., 95, 177-184 [PubMed: 21632343]
 
39. Landberg K., Simura J., Ljung K., Sundberg E., Thelander M. (2021). Studies of moss reproductive development indicate
that auxin biosynthesis in apical stem cells may constitute an ancestral function for focal growth control. New Phytologist,
229, 845-860.
https://doi.org/10.1111/nph.16914
 
40. Lobachevska O. V., Kyyak N. Y., Khorkavtsiv Y. D., Kordyum E. L., Kern V. D. (2022). Gravi-sensitivity of mosses and their
gravity-dependent ontogenetic adaptations. Life, 12, 1782, 2-14. 
https://doi.org/10.3390/life12111782
 
41. Losinska-Sičiūnienė R., Stanevičienė R., Švegždienė D. (2020). Effects of UVA and its simultaneous action with blue light 
on the growth and phototropism of cress leaves under various gravity conditions. Biologija, 66, № 2, 103-113.
 
42. Lüth V. M., Rempfer Ch., van Gessel N., Herzog O., Hanser M., Braun M., Decker E. L., Reski R. (2023). A Physcomitrella 
PIN protein acts in spermatogenesis and sporophyte retention. New Phytologist, 237, 2118-2135. 
https://doi.org/10.1111/nph.18691
 
43. Merkys A. J., Laurinavicius R. S. (1990). Plant growth in space. Fundamentals of Space Biology. Eds. M. Asashima, G. M. 
Malacinski. Tokyo: Jap. Sci. Soc. Press; Springer Verlag, Berlin, 69-83.
 
44. Mohanasundaram B., Pandey S. (2022). Effect of environmental signals on growth and development in mosses. J. Exp. Bot.,
73, № 13, 4514-4527. 
https://doi.org/10.1093/jxb/erac138
 
45. Mo M., Yokawa K., Wan Y., Baluška F. (2015). How and why do root apices sense light under the soil surface? Front. Plant
Sci., 6, 775. 
https://doi.org/10.3389/fpls.2015.00775
 
46. Moulia1 B., Badel1 E., Bastien R., Duchemin L., Eloy C. (2022). The shaping of plant axes and crowns through tropisms
and elasticity: an example of morphogenetic plasticity beyond the shoot apical meristem. New Phytologist, 233, 2354-2379.
https://doi.org/10.1111/nph.17913
 
47. Nakamura M., Nishimura T., Morita M. T. (2019). Bridging the gap between amyloplasts and directional auxin transport in
https://doi.org/10.1016/j.pbi.2019.07.005
 
plant gravitropism. Current Opinion in Plant Biology, 52, 54-60.
https://doi.org/10.1016/j.pbi.2019.07.005
 
48. Rakusova H., Han H., Valosek P., Friml J. (2019). Genetic screen for factors mediating PIN polarization in gravistimulated
https://doi.org/10.1111/tpj.14301
 
Arabidopsis thaliana hypocotyls. Plant J., 98, 1048-1059. 
https://doi.org/10.1111/tpj.14301
 
49. Ripetskyj R. T., Kit N. A., Chaban Ch. I. (1999). Influence of gravity on the photomorphism of secondary moss protonemata.
https://doi.org/10.1016/S0273-1177(99)00350-6
 
Adv. Space Res., 23, 2005-2010. 
https://doi.org/10.1016/S0273-1177(99)00350-6
 
50. Roychoudhry S., Kepinski S. (2015). Analysis of gravitropic setpoint angle control in Arabidopsis. Methods Mol. Biol., 1309,
https://doi.org/10.1007/978-1-4939-2697-8_4
 
51. Sabovljević M., Vujičić M., Pantović J. & Sabovljević A. (2014). Bryophyte conservation biology: in vitro approach to the ex
situ conservation of bryophytes from Europe. Plant Biosyst., 148, 857-868.
 
52. Sack F. D. (1991). Plant gravity sensing. Int. Rev. Cytol., 127, 193-252. 
https://doi.org/10.1016/S0074-7696(08)60695-6
 
53. Schwuchow J., Michalke W., Hertel R. (2001). An auxin transport inhibitor interferes with unicellular gravitropism in
protonemata of the moss Ceratodon purpureus. Plant Biol., 3, № 4, 357-363. 
https://doi.org/10.1055/s-2001-16459
 
54. Sinnott E. (2015). Plant Morphogenesis. London, UK: Andesite Press, 564 p.
 
55. Su S.-H., Keith M. A., Masson P. H. (2020). Gravity Signaling in Flowering Plant Roots. Plants, 9, № 10, 1-23. 
https://doi.org/10.3390/plants9101290
 
56. Thelander M., Landberg K., Sundberg E. (2018). Auxin-mediated developmental control in the moss Physcomitrella patens.
https://doi.org/10.1093/jxb/erx255
 
J. Exper. Botany, 69, № 2/5, 277-290. 
https://doi.org/10.1093/jxb/erx255
 
57. Ung K. L., Winkler M., Schulz L., Kolb M., Janacek D. P., Dedic E., Stokes D. L., Hammes U. Z., Pedersen B. P. (2022).
 
Structures and mechanism of the plant PIN-FORMED auxin transporter. Nature, 609, 605-610. 
https://doi.org/10.1038/s41586-022-04883-y
 
58. Vandenbrink J. P., Herranz R., Medina F. J., Edelmann R. E., Kiss J. Z. (2016). A novel blue-light phototropic response is
revealed in roots of Arabidopsis thaliana in microgravity. Planta, 244, 1201-1215. 
https://doi.org/10.1007/s00425-016-2581-8
 
59. Waite J. M., Dardick C. (2021). The roles of the IGT gene family in plant architecture:past, present, and future. Current
Opinion in Plant Biology, 59, 101983.
https://doi.org/10.1016/j.pbi.2020.101983
 
60. Yin Z., Gan Y., Chen Y., Kozgunova E., Yi P. (2025). The microtubule cytoskeleton in bryophytes. Cytoskeleton, 1-28.
https://doi.org/10.1002/cm.22009