Automated image post-processing system for multispectral imaging polarimeter: A review of current state

1Manziuk, DYu., 2Syniavskyi, II, 1Bezuglyi, MO
1National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Space Sci. & Technol. 2025, 31 ;(6):049-062
https://doi.org/10.15407/knit2025.06.049
Publication Language: English
Abstract: 
This article presents a review of the current state of automated post-processing for images captured by multispectral polarimeters. It analyzes key methods and algorithms used for calibration, segmentation, and data classification. The study demonstrates that combining multispectral and polarimetric information provides a deeper understanding of object and environment properties compared to using a single modality alone. Special attention is given to modern software tools for processing polarization images, highlighting their capabilities and limitations across various application domains. The growing role of machine learning and artificial intelligence methods is emphasized, as they enable efficient automation of large-scale data analysis. The importance of high-quality postprocessing is underscored, including georeferencing of image sensor pixels, calculation of geometric parameters, and correction of instrumental errors. The article also explores the potential for integrating post-processing results with GRASP (Generalized Retrieval of Atmosphere and Surface Properties) software to improve the accuracy of aerosol and cloud property retrieval.
Keywords: artificial intelligence, automated post-processing, calibration, classification, GRASP, multispectral polarimetry, remote sensing, segmentation
References: 
1. Aguiar, T. O., de Azevedo, S. C., Pedrosa, M. M., Cardim, G. P., & da Silva, E. A. (2018). Multispectral image processing system developed in CARTOMORPH 
software - NDVI module. Advances in Remote Sensing, 7, 91-100. 
https://doi.org/10.4236/ars.2018.72007
 
2. Arriaga, Pauline, Michael P. Fitzgerald, Gaspard Duchêne, Paul Kalas, Maxwell A. Millar-Blanchaer, Marshall D. Perrin, Christine H. Chen et al. "Multiband 
polarimetric imaging of HR 4796a with the gemini planet imager." The Astronomical Journal 160, no. 2 (2020): 79. 
https://doi.org/10.3847/1538-3881/ab91b1
 
3. Ayala, L., Isensee, F., Wirkert, S.J., Vemuri, A.S., Maier-Hein, K.H., Fei, B. and Maier-Hein, L., 2022. Band selection for oxygenation estimation with 
multispectral/hyperspectral imaging. Biomedical Optics Express, 13(3), pp.1224-1242.
https://doi.org/10.1364/BOE.441214
 
4. Bachute, M., Singh, A., Kumar, A., & Sahil, A. (2023, December). Color detection using Python. In IET Conference Proceedings CP859 (Vol. 2023, No. 44, pp. 
615-617). Stevenage, UK: The Institution of Engineering and Technology.
https://doi.org/10.1049/icp.2024.1026
 
5. Bondur, V. G. (2014). Modern approaches to processing large hyperspectral and multispectral aerospace data flows. Izvestiya, Atmospheric and Oceanic 
Physics, 50(9), 840-852.
https://doi.org/10.1134/S0001433814090060
 
6. Cairns, B., Russell, E. E., & Travis, L. D. (1999, October). Research Scanning Polarimeter: calibration and ground-based measurements. In Polarization: 
measurement, analysis, and remote sensing II (Vol. 3754, pp. 186-196). SPIE. 
https://doi.org/10.1117/12.366329
 
7. Celik, B. (2023). QLSU (QGIS Linear Spectral Unmixing) Plugin: An open source linear spectral unmixing tool for hyperspectral & multispectral remote 
sensing imagery. Environmental Modelling & Software, 168, 105782. 
https://doi.org/10.1016/j.envsoft.2023.105782
 
8. Chen, C., Dubovik, O., Fuertes, D., Litvinov, P., Lapyonok, T., Lopatin, A., ... & Federspiel, C. (2020). Validation of GRASP algorithm product from 
POLDER/PARASOL data and assessment of multi-angular polarimetry potential for aerosol monitoring. Earth System Science Data, 12(4), 3573-3620. 
https://doi.org/10.5194/essd-12-3573-2020
 
9. Chen, C., Litvinov, P., Dubovik, O., Fuertes, D., Matar, C., Miglietta, F., ... & Retscher, C. (2024). Retrieval of aerosol and surface properties at high 
spatial resolution: Hybrid approach and demonstration using sentinel‐5p/TROPOMI and PRISMA. Journal of Geophysical Research: Atmospheres, 129(15), 
e2024JD041041. 
https://doi.org/10.1029/2024JD041041
 
10. Chipman, R. A., Lam, W. S. T., Young, G. (2018). Polarized Light and Optical Systems. CRC Press, Taylor & Francis Group. Series: Optical Sciences and 
Applications of Light, 1036 p. ISBN 9781351129121. 
https://doi.org/10.1201/9781351129121
 
11. Cresson, R., Grizonnet, M., & Michel, J. (2018). Orfeo ToolBox Applications. QGIS and generic tools, 1, 151-242. doi: 
https://doi.org/10.1002/9781119457091.ch5
 
12. Denissova, N., Nurakynov, S., Petrova, O., Chepashev, D., Daumova, G., & Yelisseyeva, A. (2024). Remote sensing techniques for assessing snow avalanche 
formation factors and building hazard monitoring systems. Atmosphere, 15(11), 1343. 
https://doi.org/10.3390/atmos15111343
 
13. Deschamps, P. Y., Bréon, F. M., Leroy, M., Podaire, A., Bricaud, A., Buriez, J. C., & Seze, G. (2002). The POLDER mission: Instrument characteristics and 
scientific objectives. IEEE Transactions on geoscience and remote sensing, 32(3), 598-615.
https://doi.org/10.1109/36.297978
 
14. Gao, M., Franz, B. A., Knobelspiesse, K., Zhai, P.-W., Martins, V., Burton, S., Cairns, B., Ferrare, R., Gales, J., Hasekamp, O., Hu, Y., Ibrahim, A., 
McBride, B., Puthukkudy, A., Werdell, P. J., & Xu, X. (2021). Efficient multi-angle polarimetric inversion of aerosols and ocean color powered by a deep 
neural network forward model. Atmospheric Measurement Techniques, 14, 4083-4110. 
https://doi.org/10.5194/amt-14-4083-2021
 
15. Gao, Meng, et al. "Adaptive data screening for multi-angle polarimetric aerosol and ocean color remote sensing accelerated by deep learning." Frontiers 
in Remote Sensing 2 (2021): 757832.
https://doi.org/10.3389/frsen.2021.757832
 
16. Garcia, M., Davis, T., Marinov, R., Blair, S., & Gruev, V. (2018, May). Biologically inspired imaging sensors for multi-spectral and polarization 
imagery. In Polarization: Measurement, Analysis, and Remote Sensing XIII (Vol. 10655, pp. 77-84). SPIE. 
https://doi.org/10.1117/12.2305119
 
17. Garg, R., Kumar, A., Bansal, N., Prateek, M., & Kumar, S. (2021). Semantic segmentation of PolSAR image data using advanced deep learning model. 
Scientific reports, 11(1), 15365. 
https://doi.org/10.1038/s41598-021-94422-y
 
18. Guo, F., Zhu, J., Huang, L., Li, F., Zhang, N., Deng, J., Li, H., Zhang, X., Zhao, Y., Jiang, H. та Hou, X. (2024). Multi Dimensional Fusion of Spectral 
and Polarimetric Images Followed by Pseudo Color Algorithm Integration and Mapping in HSI Space. Remote Sensing, 16(7), 1119. 
https://doi.org/10.3390/rs16071119
 
19. Gupta, J., Pathak, S., & Kumar, G. (2022, May). Deep learning (CNN) and transfer learning: a review. In Journal of Physics: Conference Series (Vol. 2273, 
No. 1, p. 012029). IOP Publishing.
https://doi.org/10.1088/1742-6596/2273/1/012029
 
20. He, Chao, Honghui He, Jintao Chang, Binguo Chen, Hui Ma, and Martin J. Booth. "Polarisation optics for biomedical and clinical applications: a review." 
Light: Science & Applications 10, no. 1 (2021): 19. 
https://doi.org/10.1038/s41377-021-00639-x
 
21. Holben, B. N., Eck, T. F., Slutsker, I. A., Tanre, D., Buis, J. P., Setzer, A., ... & Smirnov, A. (1998). AERONET - A federated instrument network and 
data archive for aerosol characterization. Remote sensing of environment, 66(1), 1-16. 
https://doi.org/10.1016/S0034-4257(98)00031-5
 
22. Hooper, B. A., Baxter, B., Piotrowski, C., Williams, J. Z., & Dugan, J. (2009). An airborne imaging multispectral polarimeter (AROSS-MSP). OCEANS 2009 - 
MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Challenges, 1-10. 
https://doi.org/10.23919/OCEANS.2009.5422152
 
23. Jakkula, V. (2006). Tutorial on support vector machine (svm). School of EECS, Washington State University, 37(2.5), 3.
 
24. Karim, S., Qadir, A., Farooq, U., Shakir, M., & Laghari, A. A. (2023). Hyperspectral imaging: a review and trends towards medical imaging. Current 
Medical Imaging Reviews, 19(5), 417-427.
https://doi.org/10.2174/1573405618666220519144358
 
25. Klein, J., & Aach, T. (2012, January). Multispectral filter wheel cameras: Modeling aberrations for filters in front of lens. In Digital Photography VIII 
(Vol. 8299, pp. 226-234). SPIE. 
https://doi.org/10.1117/12.906341
 
26. Landgrebe, D., & Biehl, L. (2002). MultiSpec©. Purdue University, 
https://engineering. purdue. edu/~ biehl/MultiSpec/hyperspectral. html.
(10 August 2017).
 
27. Levenson, R. M., & Mansfield, J. R. (2006). Multispectral imaging in biology and medicine: slices of life. Cytometry Part A: the journal of the 
International Society for Analytical Cytology, 69(8), 748-758. 
https://doi.org/10.1002/cyto.a.20319
 
28. Li, X., Yan, L., Qi, P., Zhang, L., Goudail, F., Liu, T., ... & Hu, H. (2023). Polarimetric imaging via deep learning: A review. Remote Sensing, 15(6), 
1540.
https://doi.org/10.3390/rs15061540
 
29. Li, Y., Guo, X., Zhang, K., Li, X., Kong, F., & Jia, Z. (2025). The Structural Types of the Polarization Detection Unit in Imaging Polarimeter Based on 
the Stokes Parameter Method. Sensors, 25(13), 4069. 
https://doi.org/10.3390/s25134069
 
30. Li, Yi, Haiyang Zhang, Wei Liu, and Changxiang Yan. "Polarization radiometric calibration method for multichannel polarization camera." Optik 172 (2018): 
980-987. 
https://doi.org/10.1016/j.ijleo.2018.07.083
 
31. Liu X, Jiao L, Tang X, Sun Q, Zhang D. Polarimetric convolutional network for PolSAR image classification. IEEE Transactions on Geoscience and Remote 
Sensing. 2018 Dec 4;57(5):3040-54. 
https://doi.org/10.1109/TGRS.2018.2879984
 
32. Liu, X., Chang, J., Zhong, Y., Feng, S., Song, D., & Hu, Y. (2020). Optical design of a simultaneous polarization and multispectral imaging system with a 
common aperture. Journal of Modern Optics, 67(5), 462-468. 
https://doi.org/10.1080/09500340.2020.1737258
 
33. Liu, Y., Wang, Y., & Zhang, J. (2012, September). New machine learning algorithm: Random forest. In International conference on information computing and 
applications (pp. 246-252). Berlin, Heidelberg: Springer Berlin Heidelberg. 
https://doi.org/10.1007/978-3-642-34062-8_32
 
34. Manolis, I., Grabarnik, S., Caron, J., Bézy, J. L., Loiselet, M., Betto, M., ... & Meynart, R. (2013, October). The MetOp second generation 3MI 
instrument. In Sensors, Systems, and Next-Generation Satellites XVII (Vol. 8889, pp. 84-96). SPIE. doi: 
https://doi.org/10.1117/12.2028662
 
35. McBride, B. A., Martins, J. V., Barbosa, H. M., Birmingham, W., & Remer, L. A. (2020). Spatial distribution of cloud droplet size properties from 
Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) measurements. Atmospheric Measurement Techniques, 13(4), 1777-1796. 
https://doi.org/10.5194/amt-13-1777-2020
 
36. McCarthy, J., Woolley, M., & Roth, L. (2010). Correlation of environmental data measurements with polarimetric LWIR sensor measurements of man made 
objects in natural clutter. In Polarization: Measurement, Analysis, and Remote Sensing IX (SPIE Proceedings, Vol. 7672). 
https://doi.org/10.1117/12.850353
 
37. Milinevsky G, Oberemok Ye, Syniavskyi I, Bovchaliuk A, Kolomiets I, Fesianov I, Wang Yu. Calibration model of polarimeters on board the Aerosol-UA space 
mission. J. Quant. Spectrosc. Radiat. Transfer 2019; 229:92-105.
https://doi.org/10.1016/j.jqsrt.2019.03.007
 
38. Milinevsky G., Yatskiv Ya., Degtyaryov O., Syniavskyi I., Mishchenko M., Rosenbush V., Ivanov Yu., Makarov A., Bovchaliuk A., Danylevsky V., Sosonkin M., 
Moskalov S., Bovchaliuk V., Lukenyuk A., Shymkiv A., Udodov E. New satellite project "Aerosol-UA": remote sensing of aerosols in the terrestrial atmosphere. 
Acta Astronautica. 2016. V. 123.P. 292-300. 
https://doi.org/10.1016/j.actaastro.2016.02.027
 
39. Nascimento, E. S. et al. (2023). Cartographic Features Extraction Methodology in Remote Sensing Images Aiming at the Cartographic Update of Allotments. 
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1/W1-2023, 851-856, 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-851-2023
 
40. Ortiz Toro CA, Gonzalo Martín C, Garcia Pedrero A, Menasalvas Ruiz E. Superpixel-based roughness measure for multispectral satellite image segmentation. 
Remote sensing. 2015 Nov 4;7(11):14620-45.
https://doi.org/10.3390/rs71114620
 
41. Pottier, E., & Ferro-Famil, L. (2012, July). PolSARPro V5. 0: An ESA educational toolbox used for self-education in the field of POLSAR and POL-INSAR 
data analysis. In 2012 IEEE international geoscience and remote sensing symposium (pp. 7377-7380). IEEE. 
https://doi.org/10.1109/IGARSS.2012.6351925
 
42. Rosenberger, M., & Celestre, R. (2016, October). Smart multispectral imager for industrial applications. In 2016 IEEE International Conference on Imaging 
Systems and Techniques (IST) (pp. 7-12). IEEE. 
https://doi.org/10.1109/IST.2016.7738189
 
43. Savenkov S., Kolomiets I., Oberemok Y., Kurylenko R. Spectral Problem for the Jones Matrix in Remote Scattering. Space Science and Technology. 2025. 31, 
No. 1 (152). P. 27 - 34.
https://doi.org/10.15407/knit2025.01.027
 
44. Shokr M, Dabboor M. Polarimetric SAR applications of sea ice: A review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 
2023 Jul 14;16:6627-41.
https://doi.org/10.1109/JSTARS.2023.3295735
 
45. Singh, G., Kumar, R., Ainsworth, T. et al. Advanced Polarimetric Radar Remote Sensing Techniques and Applications. J Indian Soc Remote Sens 52, 2607-2610 
(2024). 
https://doi.org/10.1007/s12524-024-02069-9
 
46. Sunny, D. S., Islam, K. A., Mullick, M. R. A., & Ellis, J. T. (2022). Performance study of imageries from MODIS, Landsat 8 and Sentinel-2 on measuring 
shoreline change at a regional scale. Remote Sensing Applications: Society and Environment, 28, 100816. 
https://doi.org/10.1016/j.rsase.2022.100816
 
47. Syniavskyi I., Oberemok Ye., Danylevsky V., Bovchaliuk A., Fesianov I., Milinevsky G., Savenkov S., Yukhymchuk Yu., Sosonkin M., Ivanov Yu. Aerosol‑UA 
satellite mission for the polarimetric study of aerosols in the atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer. 2021. Vol. 267. 
P.107601.
https://doi.org/10.1016/j.jqsrt.2021.107601
 
48. Syniavskyi, I.I., Ivanov, Yu.S., Sosonkin, M.G., Milinevsky, G.P., Koshman, G. (2018) Multispectral imager-polarimeter of the "AEROSOL-UA" space project. 
Space Sci.&Technol., 24(3), 23-32. 
https://doi.org/10.15407/knit2018.03.023
 
49. Wang, Y., Tong, G., Li, B., Guo, X., Song, X., Zhao, Y., ... & Yu, Y. (2023). Miniaturized customized filtering-wheel-based multispectral imaging system 
for target detection. Measurement, 221, 113506. 
https://doi.org/10.1016/j.measurement.2023.113506
 
50. Wishart, D. (1969). 256. Note: An algorithm for hierarchical classifications. Biometrics, 165-170. 
https://doi.org/10.2307/2528688
 
51. Xing, Y., & Gomez, R. B. (2001, June). Hyperspectral image analysis using ENVI (environment for visualizing images). In Geo-Spatial Image and Data 
Exploitation II (Vol. 4383, pp. 79-86). SPIE. 
https://doi.org/10.1117/12.428244
 
52. Zhang, Y., Shi, Z.-G., & Qiu, T.-W. (2017). Infrared small target detection method based on decomposition of polarization information. Journal of 
Electronic Imaging, 26(3), 033004.
https://doi.org/10.1117/1.JEI.26.3.033004
 
53. Zuhlke, M., Fomferra, N., Brockmann, C., Peters, M., Veci, L., Malik, J., & Regner, P. (2015, December). SNAP (sentinel application platform) and the ESA 
sentinel 3 toolbox. In Sentinel-3 for Science Workshop (Vol. 734, p. 21).