Search for the potential electromagnetic counterparts of neutrino events in SDSS galaxies at z < 0.1
Heading:
| 1Sergijenko, O, 1Vavilova, IB, 1Izviekova, IO, 1Karakuts, DR, 1Kukhar, OM 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
| Space Sci. & Technol. 2025, 31 ;(6):094-105 |
| https://doi.org/10.15407/knit2025.06.094 |
| Publication Language: English |
Abstract: Шdentification of the electromagnetic emission in coincidence with the high-energy neutrinos is fundamentally important in multi
messenger astronomy. Such observations are essential for constraining the source localization, determining the source type, and understanding the emission mechanisms. Generally, they require following up a neutrino alert (there are 2 streams of alerts for IceCube: Gold, having at least 50 % probability of astrophysical origin, and Bronze, with such probaility of at least 30 %) with an electromagnetic facility (with the primary interest in X and gamma rays), but also involve an electromagnetic monitoring of the hotpots (points exceeding the instrument sensitivity) in the skymap provided by IceCube. The alternative approach is to perform the correlation analysis across the available neutrino events and catalogs of sources. We searched for spatial coincidence between galaxies from the SDSS and the high-energy neutrino events. The IceCube Gold alerts and the neutrino-electromagnetic coincidence events from AMON (Astrophysical Multimessenger Observatory Network) identified until the end of September 2025 are considered. Galaxies from the Morphological catalog of galaxies at 0.02 < z < 0.1 (including 315,776 objects from SDSS DR9 with the absolute stellar magnitudes in the range of −24 m < Mr < −13m ) are examined. Among 59 IceCube Gold alerts, we found 3 with only 1 galaxy (SDSS J231231.52+033415.1) within the 50 % containment radius. Among 24 neutrino-electromagnetic coincidence events, there are also 3 with only 1 galaxy (SDSS J220711.14+122535.9) within the 50 % containment radius. These 6 galaxies are the most promising candidates for host galaxies of the neutrino sources. We summarize their available multiwavelength data and light curves taken from ZTF for the period 2018—2025 We also searched for spatial coincidence between the Milky Way analog candidate galaxies and the high-energy neutrino events. |
| Keywords: galaxies — objects: SDSS J220711.14+122535.8, multi-messenger astronomy, Neutrino astronomy, SDSS J220711.14+122535.9, transient sources |
References:
1. Aartsen M. G., Ackermann M., Adams J. et al (2017), The IceCube real-time alert system. Astroparticle Physics, 92, pp. 30-41.
2. Aartsen M., Ackermann M., Adams J. (2018). Neutrino emission from the direction of the blazar TXS 0506+056 prior to the
IceCube-170922A alert. Science, 361, pp. 147-151.
https://doi.org/10.1126/science.aat2890
3. Abbasi R., Ackermann M., Adams J. et al (2022). Evidence for neutrino emission from the nearby active galaxy NGC 1068.
https://doi.org/10.1126/science.aat2890
3. Abbasi R., Ackermann M., Adams J. et al (2022). Evidence for neutrino emission from the nearby active galaxy NGC 1068.
Science, 378, 538-543.
https://doi.org/10.1126/science.abg3395
4. Ayala Solares H;A., Coutu S., Cowen D.F. et al. (2020_. The Astrophysical Multimessenger Observatory Network (AMON):
https://doi.org/10.1126/science.abg3395
4. Ayala Solares H;A., Coutu S., Cowen D.F. et al. (2020_. The Astrophysical Multimessenger Observatory Network (AMON):
Performance and science program. Astroparticle Physics, 114, pp. 68-76.
https://doi.org/10.1016/j.astropartphys.2019.06.007
5. Blaufuss E., Kintscher T., Lu L., and Tung C. F. The Next Generation of IceCube Real-time Neutrino Alerts (2020). In 36th
https://doi.org/10.1016/j.astropartphys.2019.06.007
5. Blaufuss E., Kintscher T., Lu L., and Tung C. F. The Next Generation of IceCube Real-time Neutrino Alerts (2020). In 36th
International Cosmic Ray Conference (ICRC2019). Proceedings of Science, ICRC2019, 36, Art. no 1021.
https://doi.org/10.22323/1.358.01021
6. Burgazli, A., Sergijenko, O., Vavilova, I. (2022). Machine learning in cosmology and gravitational wave astronomy: recent
6. Burgazli, A., Sergijenko, O., Vavilova, I. (2022). Machine learning in cosmology and gravitational wave astronomy: recent
trends. In book "Horizons in Computer Science Research, 22, pp. 193-240. New York, Nova Science Publisher Inc. ISBN 979-8-88697
-101-9, 979-8-88697-234-4(e-Book)
7. Chang Y.-Y., van der Wel A., da Cunha E., and Rix H.-W. (2015). Stellar Masses and Star Formation Rates for 1M Galaxies from
7. Chang Y.-Y., van der Wel A., da Cunha E., and Rix H.-W. (2015). Stellar Masses and Star Formation Rates for 1M Galaxies from
SDSS+WISE. Astrophys. J. Suppl. Ser., 219, no. 1, Art. no. 8.
https://doi.org/10.1088/0067-0049/219/1/8
8.Duev D.A., Mahabal A.; Masci F. J. et al. (2019). Real-bogus classification for the Zwicky Transient Facility using deep
https://doi.org/10.1088/0067-0049/219/1/8
8.Duev D.A., Mahabal A.; Masci F. J. et al. (2019). Real-bogus classification for the Zwicky Transient Facility using deep
learning. Mon. Notic. R. Astron. Soc., 489, no. 3. pp. 3582-3590,
https://doi.org/10.1093/mnras/stz2357
9.. IceCube Collaboration (2013). Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science, 342,
https://doi.org/10.1093/mnras/stz2357
9.. IceCube Collaboration (2013). Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science, 342,
1242856
https://doi.org/10.1126/science.1242856
10. IceCube Collaboration (2023). Observation of high-energy neutrinos from the Galactic plane. Science, 380, 1338-1343.
https://doi.org/10.1126/science.1242856
10. IceCube Collaboration (2023). Observation of high-energy neutrinos from the Galactic plane. Science, 380, 1338-1343.
11. Khramtsov, V., Vavilova, I.B., Dobrycheva, D.V. et al. (2022). Machine learning technique for morphological classification
of galaxies from the SDSS. III. The CNN image-based inference of detailed features. Space Sci. & Technol.; 28(5), p. 27-55
12. Kompaniiets O. V., Vavilova I. B., Kukhar O. M. et al. (2025). Milky Way galaxy-analogs and isolated galaxies with bars:
environmental density in the Local Volume. Space Sci. & Technol., 31, No. 6. P. 133-147.
13. Neronov A., Semikoz D., Savchenko D.(2024). Neutrino signal from Cygnus region of the Milky Way. Phys. Rev. D, 110, 043024.
13. Neronov A., Semikoz D., Savchenko D.(2024). Neutrino signal from Cygnus region of the Milky Way. Phys. Rev. D, 110, 043024.
14. Nordin, J., Brinnel, V., van Santen, J. et al. (2019). Transient processing and analysis using AMPEL: Alert management,
photometry, and evaluation of light curves. Astron. Astrophys., 631, A147.
https://doi.org/10.1051/0004-6361/201935634
15. Nordin, J., Brinnel, V., van Santen, J., Reusch, S., and Kowalski, M. (2025). AMPEL workflows for LSST: Modular and
https://doi.org/10.1051/0004-6361/201935634
15. Nordin, J., Brinnel, V., van Santen, J., Reusch, S., and Kowalski, M. (2025). AMPEL workflows for LSST: Modular and
reproducible real-time photometric classification, Astron. Astrophys., 698, Art. no. A13, EDP.
https://doi.org/10.1051/0004-6361/202452481
16. Reusch S., Stein R., Kowalski M. et al. (2022). Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy
https://doi.org/10.1051/0004-6361/202452481
16. Reusch S., Stein R., Kowalski M. et al. (2022). Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy
Neutrino. Phys. Rev. Lett.. 128, 221101,
https://doi.org/10.1103/PhysRevLett.128.221101
17. Sergijenko O., Brown A., Fiorillo D. et al. (2021). Sensitivity of the Cherenkov Telescope Array to emission from the
https://doi.org/10.1103/PhysRevLett.128.221101
17. Sergijenko O., Brown A., Fiorillo D. et al. (2021). Sensitivity of the Cherenkov Telescope Array to emission from the
gamma-ray counterparts of neutrino events. Proceedings of Science, ICRC2021, Art. no 975. PoS(ICRC2021)975.
18. Sergijenko O., Brown A., Fiorillo D. et al. (2023). Sensitivity of the Cherenkov Telescope Array to the gamma-ray emission
from neutrino sources detected by IceCube Proceedings of Science, ICRC2023, Art. no 1531. PoS(ICRC2023)1531
19. Stein, R., Velzen, S.v., Kowalski, M. et al. (2021). A tidal disruption event coincident with a high-energy neutrino. Nat.
Astron., 5, pp. 510-518
https://doi.org/10.1038/s41550-020-01295-8
20. Tempel, E., Stoica, R. S., Martínez, V. J. et al. (2014). Detecting filamentary pattern in the cosmic web: a catalogue of
https://doi.org/10.1038/s41550-020-01295-8
20. Tempel, E., Stoica, R. S., Martínez, V. J. et al. (2014). Detecting filamentary pattern in the cosmic web: a catalogue of
filaments for the SDSS. Mon. Notic. R. Astron. Soc., 438, no. 4, pp. 3465-3482.
https://doi.org/10.1093/mnras/stt2454
21. Tempel, E., Tuvikene, T., Kipper, R., and Libeskind, N. I. (2017). Merging groups and clusters of galaxies from the SDSS
https://doi.org/10.1093/mnras/stt2454
21. Tempel, E., Tuvikene, T., Kipper, R., and Libeskind, N. I. (2017). Merging groups and clusters of galaxies from the SDSS
data. The catalogue of groups and potentially merging systems.Astron. Astrophys., 602, Art. no. A100.
https://doi.org/10.1051/0004-6361/201730499
22. Vavilova I. B., Dobrycheva D.V., Vasylenko M. Yu. (2021), Machine learning technique for morphological classification of
22. Vavilova I. B., Dobrycheva D.V., Vasylenko M. Yu. (2021), Machine learning technique for morphological classification of
galaxies from the SDSS. I. Photometry-based approach, Astron. Astrophys., 648, p. A122,
https://doi.org/10.1051/0004-6361/202038981
23. Vavilova I.B., Khramtsov V., Dobrycheva D.V. et al. (2022). Machine learning technique for morphological classification of
https://doi.org/10.1051/0004-6361/202038981
23. Vavilova I.B., Khramtsov V., Dobrycheva D.V. et al. (2022). Machine learning technique for morphological classification of
galaxies from SDSS. II. The image-based morphological catalogs of galaxies at 0.02<z<0.1 . Space Sci. & Technol., 28(1), p. 3-
22.
https://doi.org/10.15407/knit2022.01.003
24. Vavilova I.B., Khramtsov V. , Dobrycheva D.V. (2023). VizieR Online Data Catalog: Galaxies at 0.02<z<0.1 morphological
https://doi.org/10.15407/knit2022.01.003
24. Vavilova I.B., Khramtsov V. , Dobrycheva D.V. (2023). VizieR Online Data Catalog: Galaxies at 0.02<z<0.1 morphological
catalog.
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/other/KNIT/28.3
25. Vavilova, I.B.; Fedorov, P.M.; Dobrycheva, D.V. et al. (2024). An advanced approach to the definition of the "Milky Way
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/other/KNIT/28.3
25. Vavilova, I.B.; Fedorov, P.M.; Dobrycheva, D.V. et al. (2024). An advanced approach to the definition of the "Milky Way
galaxies-analogues". Space Sci. & Technol., 30, 4, P. 81-90.
https://doi.org/10.15407/knit2024.04.081
26. Wei, J. (2024).A New Statistical Analysis of the Morphology of Spiral Galaxies. Astron. J., 168, no. 6, Art. no. 264.
https://doi.org/10.15407/knit2024.04.081
26. Wei, J. (2024).A New Statistical Analysis of the Morphology of Spiral Galaxies. Astron. J., 168, no. 6, Art. no. 264.
https://doi.org/10.3847/1538-3881/ad8632
27. Willett K. W., Lintott C. J., Bamford S. P., et al. (2013). Galaxy Zoo 2: detailed morphological classifications for 304 122
27. Willett K. W., Lintott C. J., Bamford S. P., et al. (2013). Galaxy Zoo 2: detailed morphological classifications for 304 122
galaxies from the Sloan Digital Sky Survey. Mon. Notic. Roy. Astron. Soc., 435, no.4, p. 2835-2860.
https://doi.org/10.1093/mnras/stt1458.
28. Yang, X., Mo, H. J., van den Bosch, F. C., Pasquali, A., Li, C., and Barden, M. (2007). alaxy Groups in the SDSS DR4. I. The
28. Yang, X., Mo, H. J., van den Bosch, F. C., Pasquali, A., Li, C., and Barden, M. (2007). alaxy Groups in the SDSS DR4. I. The
Catalog and Basic Properties. Astrophys. J., vol. 671, no. 1, pp. 153-170.
https://doi.org/10.1086/522027
29. York D., Evensen N.M., Martínez M.L., De Basabe D.J. (2004). Unified equations for the slope, intercept, and standard errors
https://doi.org/10.1086/522027
29. York D., Evensen N.M., Martínez M.L., De Basabe D.J. (2004). Unified equations for the slope, intercept, and standard errors
of the best straight line. American Journal of Physics, 72, 3, pp.367-375.
https://doi.org/10.1119/1.1632486
https://doi.org/10.1119/1.1632486
