On the possibility of realization of satellite microacceleration transducer based on nanotubes
Heading:
1Klymenko, Yu.A, 1Yatsenko, VA, 1Shatokhina, Yu.V, 1Prutsko, Yu.V, 1Semeniv, OV 1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine |
Kosm. nauka tehnol. 2008, 14 ;(2):73-76 |
https://doi.org/10.15407/knit2008.02.073 |
Publication Language: Russian |
Abstract: The idea to use nanotubes for making a sensitive element of a satellite microacceleration transducer (a nanoaccelerometer) is proposed. The device performance is provided by a variation of the nanotube electroconductivity under the influence of external inertial forces. The working mechanism for the microacceleration transducer and some recommendations towards its realization are discussed.
|
Keywords: electroconductivity, microacceleration, nanotube |
References:
1. Klymenko Yu. A., Cheremnykh O. K., Yatsenko V. A., Maslova N. V. State and Prospects of Creating New Generation Microsatellites: New Materials, Nanotechnology and Architecture. Kosm. nauka tehnol., 7 (2-3), 53—65 (2001) [in Russian].
2. Ekinci K. L., Roukes M. L. Nanoelectromechanical systems. Rev. Sci. Instrum., 76, Art. N 061101 (2005).
https://doi.org/10.1063/1.1927327
https://doi.org/10.1063/1.1927327
3. Farajian A. A., Yakobson B. I., Mizuseki H., Kawazoe Y. Electronic transport through bent carbon nanotubes: nanoelectromechanical sensors and switches. Phys. Rev. B, 67, Art. N 205423 (2003).
https://doi.org/10.1103/PhysRevB.67.205423
https://doi.org/10.1103/PhysRevB.67.205423
4. Globus A., Bailey D., Han J., et al. NASA applications of molecular nanotechnology. J. Brit. Interplanetary Soc., 51, 145—152 (1998).
5. Sapmaz S., Blanter Y. M., Gurevich L., van der Zant H. S. J. Carbon nanotubes as nanoelectromechanical systems. Phys. Rev. B, 67, Art. N 235414 (2003).
https://doi.org/10.1103/PhysRevB.67.235414
https://doi.org/10.1103/PhysRevB.67.235414
6. Sinha N., Ma J., Yeow T. W. Carbon nanotube-based sensors. J. Nanosci. and Nanotechnology, 6, 573—590 (2006).
https://doi.org/10.1166/jnn.2006.121
https://doi.org/10.1166/jnn.2006.121
7. Tombler T. W., Zhou C, Alexseyev L., et al. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature, 405 (15), 769—772 (2000). e:EN-US;mso-fareast-language: RU;mso-bidi-language:AR-SA'> (2006) [in Russian].