Tropospheric-ionospheric effects of the 3 October 2005 partial solar eclipse in Kharkiv. 1. Observations

1Burmaka, VP, 2Lysenko, VN, 3Lyashenko, MV, 4Chernogor, LF
1Institute of Ionosphere of National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Kharkiv, Ukraine
2Institute of Ionosphere of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Kharkiv, Ukraine
3Institute of Ionosphere of the National Academy of Sciences of Ukraine and Ministry for Education and Sciences of Ukraine, Kharkiv, Ukraine
4V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kosm. nauka tehnol. 2007, 13 ;(6):074-086
https://doi.org/10.15407/knit2007.06.074
Publication Language: Russian
Abstract: 
The effects in the troposphere, ionosphere and in the geomagnetic field that were observed during the 3 October 2005 partial (about 24 %) solar eclipse are presented. The measurements were carried out using instruments of observatories near Kharkiv. A decrease of 1 to 1.4 К in the tropospheric temperature, a decrease of 100 to 200 К in ion temperature and of 40 to 80 К in electron one in the 410–490 km altitude range were observed during the solar eclipse main phase. A decrease in the electron density was insignificant (about 5 %) and disguised by daily variations. The proton density showed a twofold increase in the 400–800 km altitude range and a decrease by a factor of seven to ten in the 900–1200 km altitude range. The magnitude of the plasma drift velocity vertical component increased by approximately 20 m/s. The solar eclipse was accompanied by the generation of quasi-periodic disturbances in the ionosphere and geomagnetic field.
Keywords: altitude range, main phase, temperature
References: 
1. Akimov L. A., Bogovskii V. K., Grigorenko E. I., et al. Atmospheric–ionospheric effects of the solar eclipse of May 31, 2003, in Kharkov. Geomagnetizm i Aeronomiia, 45 (4), 526—551 (2005) [in Russian].
2. Akimov L. A., Grigorenko E. I., Taran V. I., et al. Integrated radio physical and optical studies of dynamic processes in the atmosphere and geospace caused by the solar eclipse of August 11, 1999. Zarubezhnaya radioelektronika. Uspekhi sovremennoi radioelektroniki, No. 2, 25—63 (2002) [in Russian].
3. Boitman O. N., Kalikhman A. D., Tashchilin A. V. Midlatitude ionosphere during the total solar eclipse of March 9, 1997: 1. Modeling of eclipse effects. Geomagnetizm i Aeronomiia, 39 (6), 45—51 (1999) [in Russian].
https://doi.org/10.1029/1999JA900228
4. Boitman O. N., Kalikhman A. D., Tashchilin A. V. Midlatitude ionosphere during the total solar eclipse of March 9, 1997: 2. Observational data and comparison with the simulation results. Geomagnetizm i Aeronomiia, 39 (6), 52—60 (1999) [in Russian].
https://doi.org/10.1029/1999JA900228
5. Borisov B. B., Egorov D. A., Egorov N. E., et al. A Comprehensive Experimental Study of the Ionospheric Response to the Solar Eclipse of March 9, 1997. Geomagnetizm i Aeronomiia, 40 (3), 94—103 (2000) [in Russian].
6. Burmaka V. P., Taran V. I., Chernogor L. F. Clustered-instrument studies of ionospheric wave disturbances accompanying rocket launches against the background of nonstationary natural processes. Radio Physics and Radio Astronomy, 9 (1), 5—28 (2004) [in Russian].
7. Burmaka V. P., Taran V. I., Chernogor L. F. Results of Studying Wave-Like Disturbances in the Ionosphere Using the Incoherent Scatter Method. Usp. Sovrem. Radioelektron., No. 3, 4—35 (2005) [in Russian].
8. Garmash K. P., Leus S. G., Pazura S. A., et al. Statistics of Terrestrial Electromagnetic Field Fluctuation. Radio Physics and Radio Astronomy, 8 (2), 163—180 (2003) [in Russian].
9. Gokov A. M., Chernogor L. F. Processes in Lower Ionosphere during August 11, 1999 Solar Eclipse. Radio Physics and Radio Astronomy, 5 (4), 348—360 (2000) [in Russian].
10. Kolokolov L. E., Legen'ka A. D., Pulinets S. A. Ionospheric effects associated with the solar eclipse on March 18, 1988. Geomagnetizm i Aeronomiia, 33 (1), 49—57 (1993) [in Russian].
11. Kostrov L. S., Chernogor L. F. Processes in Bottomside Ionosphere during August 11, 1999 Solar Eclipse. Radio Physics and Radio Astronomy, 5 (4), 361—370 (2000) [in Russian].
12. Lazorenko O. V., Panasenko S. V., Chernogor L. F. The adaptive Fourier transform. Elektromagnitnye Volny i Elektronnye Systemy, 10 (10), 39—49 (2005) [in Russian].
13. Lysenko V. N. Measuring the vertical component of the plasma-drift velocity and kinetic temperatures in the ionosphere. Geomagnetizm i Aeronomiia, 41 (3), 365—368 (2001) [in Russian].
14. Taran V. I. A study of the natural and artificially disturbed ionosphere by the incoherent scatter method. Geomagnetizm i Aeronomiia, 41 (5), 659—666 (2001) [in Russian].
15. Chernogor L. F. Magnetosphere Electron Precipitation Induced by a Solar Eclipse. Radio Physics and Radio Astronomy, 5 (4), 371—375 (2000) [in Russian].
16. Afraimovich E. L., Kosogorov E. A., Lesyuta O. S. Effects of the August 11,1999 total solar eclipse as deduced from total electron content measurements at the GPS network. J. Atmos. Solar-Terr. Phys., 64 (18), 1933—1941 (2002).
https://doi.org/10.1016/S1364-6826(02)00221-3
17. Chimonas G. Internal Gravity-Wave Motions Induced in the Earth's Atmosphere by a Solar Eclipse. J. Geophys. Res., 75 (28), 5545—5551 (1970).
https://doi.org/10.1029/JA075i028p05545
18. Chimonas G., Hines C. O. Atmospheric Gravity Waves Induced by a Solar Eclipse. J. Geophys. Res., 75, 875 (1970).
https://doi.org/10.1029/JA075i004p00875

19. Stubbe P. The F-region during an eclipse - A theoretical study. J. Atmos. and Terr. Phys., 32 (6), 1109—1116 (1970).
https://doi.org/10.1016/0021-9169(70)90121-2