On the nature of Solar irradiance five-minute oscillations
Heading:
1Stodilka, MI 1Astronomical Observatory of the Ivan Franko National University of L’viv, L'viv, Ukraine |
Kosm. nauka tehnol. 2007, 13 ;(3):067-081 |
https://doi.org/10.15407/knit2007.03.067 |
Publication Language: Russian |
Abstract: We examined a possible nature and the origin of solar irradiance five-minute oscillations. Using solar radiation observations (DIFOS-F, VIRGO SPM, the line λ 532.418 nm Fe I of a high spatial resolution) we solved inverse radiative transfer problem and reproduced height stratification of the local and global temperature oscillations of low l in the solar photosphere. Pseudoglobal oscillations of temperature were extracted from photosphere oscillations, which enabled us to study the contribution of acoustic and internal gravity modes into the solar irradiance oscillations. It is shown that the latter ones originate probably from the scattering p-modes of low l on the solar granulation with the subsequent constructive interference.
|
Keywords: inverse problem, oscillations, solar |
References:
1. Atroshchenko I. N., Gadun A. S., Gopasyuk S. I., et al. Variations in the Global Characteristics of the Sun, Ed. by E. A. Gurtovenko, 304 p. (Nauk. Dumka, Kiev, 1991) [in Russian].
2. Kostyk R. I., Osipov S. N., Lebedev N. I. The first results of the DIFOS-F experiment, . Kosm. nauka tehnol., 9 (2-3), 10—12 (2003) [in Ukrainian].
https://doi.org/10.15407/knit2003.02.010
https://doi.org/10.15407/knit2003.02.010
3. Kostyk R. I., Shchukina N. G. Five-minute oscillations and the fine structure of the solar photosphere. I. Kinematika Fiz. Nebesn. Tel, 15 (1), 25—37 (1999) [in Russian].
4. Landau L. D., Lifshits E. M. Continuum Mechanics, 788 p. (Gostekhizdat, Moscow, 1953) [in Russian].
5. Stodilka M. I. The Inverse Problem for a Study of Solar and Stellar Atmosphere Inhomogeneities. Zhurn. fiz. doslidzhen' [Journal of Physical Studies], 6 (4), 435—442 (2002) [in Ukrainian].
6. Stodilka M. I. Temperature structure of a real solar granulation. Kinematika Fiz. Nebesn. Tel, 19 (5), 407—416 (2003) [in Ukrainian].
7. Stodilka M. I. The Application of Inverse Methods for the Investigation of Solar Brightness Oscillations. Zhurn. fiz. doslidzhen' [Journal of Physical Studies], 8 (2), 192—198 (2004) [in Ukrainian].
8. Hemming R. V. Digital Filters, 223 p. (Sov. Radio, Moscow, 1980) [in Russian].
9. Espagnet O., Muller R., Roudier T., et al. Spatial relation between the 5-minute oscillations and granulation patterns. Astron. and Astrophys., 313 (1), 297— 305 (1996).
10. Frohlich C., Bonnert R. M., Bruns A. V., et al. IPHIR: The helioseismology experiment on the PHOBOS mission. Seismology of the Sun and Sun-like stars, ESA SP-286, 359—362 (1988).
11. Georgobiani G., Kosovichev A. G., Nigam R., et al. Numerical simulations of oscillation modes of the solar convective zone. Astrophys. J., 530, L139— L142 (2000).
https://doi.org/10.1086/312490
https://doi.org/10.1086/312490
12. Hasler K.-H., Zhugzhda Y. D., Lebedev N. L., et al. Observation of solar low-1 p-modes by the CORONAS— DIFOS experiment. Astron. and Astrophys., 322 (1), L41—L44 (1997).
13. Hickey J. R., Stowe L. L., Jacobowitz H., et al. Initial solar irradiance determinations from NIMBUS-7 cavity radiometer measurements. Science, 208, 281 — 297 (1980).
https://doi.org/10.1126/science.208.4441.281
https://doi.org/10.1126/science.208.4441.281
14. Hoekzema N. M., Brandt P. N., Rutten R. J. Small-scale topology of solar atmosphere dynamics. III. Granular persistence and photospheric wave amplitudes. Astron. and Astrophys., 333 (1), 322—332 (1998).
15. Hoekzema N. M., Rutten R. J. Small scale topology of solar atmosphere dynamics. II. Granulation, K2v qrains and waves. Astron. and Astrophys., 329 (2), 725—734 (1998).
16. Hoekzema N. M., Rutten R. J., Brandt P. N., Shine R. A. Small-scale topology of solar atmosphere dynamics. I. Wave sources and wave diffraction. Astron. and Astrophys., 329 (1), 276—290 (1998).
17. Khomenko E. V., Kostik R. I., Shchukina N. G. Five- minute oscillations above granules and intergranular lanes. Astron. and Astrophys., 369 (1), 660— 671 (2001).
https://doi.org/10.1051/0004-6361:20010129
https://doi.org/10.1051/0004-6361:20010129
18. Kiefer M., Stix M., Balthasar H. Wave modulation and wave sources in the solar convection zone. Astron. and Astrophys., 359 (2), 1175—1184 (2000).
19. Komm R., Howe R., Hill F. Localizing width and energy of solar global p-modes. Astrophys. J., 572 (1), 663—673 (2002).
https://doi.org/10.1086/340196
https://doi.org/10.1086/340196
20. Lebedev N. I., Oraevsky V. N., Zhugzhda Y. D., et al. First results of the CORONAS—DIFOS experiment. Space observations of solar irradiance oscillations. Astron. and Astrophys., 296 (1), L25—L28 (1995).
21. Murawski K., Pelinovski E. N. The effect of random flow on solar acoustic waves. Astron. and Astrophys., 359 (2), 759—765 (2000).
22. Musman S., Rust D. M. Vertical velocities and horizontal wave propagation in the solar photosphere. Solar Phys., 13 (1), 261—286 (1970).
https://doi.org/10.1007/BF00153548
https://doi.org/10.1007/BF00153548
23. Nordlund A., Stein R. F. Solar Oscillations and Convection. I. Formalism for Radial Oscillations. Astrophys. J., 546 (1), 576—584 (2001).
https://doi.org/10.1086/318217
https://doi.org/10.1086/318217
24. Press W. H., Flannery B. P., Teukolsky S. A., Vetterling W. T. Numerical recipes, 934 p. (Union. Press, Cambridge, 1992).
25. Puschmann K., Vazquez M., Bonet J. A., et al. Time series of high resolution photospheric spectra in a quiet region of the sun. I. Analysis of global and spatial variations of line parameters. Astron.and Astrophys., 408 (1), 363—378 (2003).
https://doi.org/10.1051/0004-6361:20030979
https://doi.org/10.1051/0004-6361:20030979
26. Restaino S. R., Stebbins R. T., Goode P. R. Observation of impulsive acoustic events and the excitation of solar oscillations. Astrophys. J., 408 (1), L57—L60 (1993).
https://doi.org/10.1086/186830
https://doi.org/10.1086/186830
27. Rimmele T. R., Goode P. R., Harold E., Stebbins R. T. Dark lanes in granulation and the excitation of solar oscillations. Astrophys. J., 444 (2), L119—L122 (1995).
https://doi.org/10.1086/187874
https://doi.org/10.1086/187874
28. Robinson F. J., Demarque P., Li L. H., et al. Three-dimensional convection simulations of the outer layers of the Sun using realistic physics. Mon. Notic. Roy. Astron. Soc., 340 (3), 923—936 (2003).
https://doi.org/10.1046/j.1365-8711.2003.06349.x
https://doi.org/10.1046/j.1365-8711.2003.06349.x
29. Rodriguez Hidalgo I., Ruiz Cobo B., Collados M. Lagrangian and Eulerian Stratifications of Acoustic Oscillations through the Solar Photosphere. Astrophys. J., 547 (1), 491—502 (2001).
https://doi.org/10.1086/318360
https://doi.org/10.1086/318360
30. Ruiz Cobo B., del Toro Iniesta J. C. Inversion of Stokes profiles. Astrophys. J., 398 (1), 375—385 (1992).
https://doi.org/10.1086/171862
https://doi.org/10.1086/171862
31. Ruiz Cobo B., Rodriguez Hidalgo I., Collados M., et al. Stratification with Optical Depth 5 Minute Oscillation through solar Photosphere. Astrophys. J., 488 (1), 462—472 (1997).
https://doi.org/10.1086/304688
https://doi.org/10.1086/304688
32. Rutten R. J., de Wijn A.G., Sutterlin P. DOT tomography of the solar atmosphere. II. Reversed granulation in Ca II H. Astron. and Astrophys., 416 (1), 333—340 (2004).
https://doi.org/10.1051/0004-6361:20035636
https://doi.org/10.1051/0004-6361:20035636
33. Rutten R. J., Krijger J. M. Dynamics of the solar chromosphere. IV. Evidence for atmospheric gravity waves from TRACE. Astron. and Astrophys., 407 (2), 735—740 (2003).
https://doi.org/10.1051/0004-6361:20030894
https://doi.org/10.1051/0004-6361:20030894
34. Stein R. F., Nordlund A. Solar Oscillations and Convection. II. Excitation of Radial Oscillations. Astrophys. J., 546 (1), 585—603 (2001).
https://doi.org/10.1086/318218
https://doi.org/10.1086/318218
35. Stix M. Modulation of Acoustic Waves by Solar Convection. Solar Phys., 196 (1), 19—27 (2000).
https://doi.org/10.1023/A:1005275115455
https://doi.org/10.1023/A:1005275115455
36. Straus T., Bonaccini D. Dynamics of the solar photosphere. I. Two-dimensional spectroscopy of mesoscale phenomena. Astron. and Astrophys., 324 (2), 704— 712 (1997).
37. Strous L. H., Goode P. R., Rimmele T. R. The Dynamics of the Excitation of Solar Oscillations. Astrophys. J., 535 (2), 1000—1013 (2000).
https://doi.org/10.1086/308892
https://doi.org/10.1086/308892
38. Willson R. C. Measurements of solar total irradiance and its variability. Space Sci. Rev., 38, 203—242 (1984).
https://doi.org/10.1007/BF00176830
https://doi.org/10.1007/BF00176830
39. Woodard M., Hudson H. Solar oscillations observed in the total irradiance. Solar Phys., 82 (1), 67— 73 (1983).
https://doi.org/10.1007/BF00145546
https://doi.org/10.1007/BF00145546
40. Zhugzhda Y. D. Waves in a convective atmosphere: ID periodical model. Astron. and Astrophys., 332 (1), 314—324 (1998).
41. Zhugzhda Y. D. Waves and shear flows. Astron. and Astrophys. Transactions, 22 (4-5), 593— 606 (2003).
https://doi.org/10.1080/1055679031000124457
https://doi.org/10.1080/1055679031000124457
42. Zhugzhda Y. D., Stix M. Acoustic waves in structured media and helioseismology. Astron. and Astrophys., 291 (1), 310—319 (1994).