Molecular contamination of spacecraft surfaces in thermostatic control and orbital injection of launch vehicle nose cone

1Shuvalov, VA, 2Tikhii, VG, 3Potapovych, LP, 4Priymak, AI, 1Pismennyi, NI, 4Kochubey, GS
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Yangel Yuzhnoye State Design Office, Dnipropetrovsk, Ukraine
3Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
4Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2007, 13 ;(3):003-011
https://doi.org/10.15407/knit2007.03.003
Publication Language: Russian
Abstract: 
We developed calculation and experimental procedures for engineering evaluation of surface roughness levels and mass of spacecraft molecular contamination level in thermostatic control of the Dnepr LV's nose cone by high-pressure air and in orbital injection of the space head module. It is shown that spacecraft surface molecular contamination corresponds to А/65ξ, ≤ А/25 levels in thermostatic control of the space head module by air of a purity class of 5000, and the particle mass of condensed phase of volatile compounds deposited on spacecraft surfaces during 930 seconds of flight is within 0.333 ≤ M ≤ 2.690 mg/m2 in orbital injection, which is not worse than a purity level of ξ А/3.6 according to the MILSTD 1246C standard.
Keywords: molecular contamination level, spacecraft, thermostatic control
References: 
1. Bishop W. M., Minkowycz W. J. Decomposition rate of a phenolic resin. Raketnaja tehnika i kosmonavtika, 11 (4), 27—34 (1973) [in Russian].
2. Bond J. W., Watson K., Welch J. Physical Theory of Gas Dynamics, 556 p. (Mir, Moscow, 1968) [in Russian].
3. Devien M. Flows and heat exchange in rarefied gases, 187 p. (Izd-vo inostr. lit-ry, Moscow, 1962) [in Russian].
4. Dushman S. Scientific foundations of vacuum technique, 716 p. (Mir, Moscow, 1964) [in Russian].
5. Zhirifalko L. Statistical Physics, 530 p. (Mir, Moscow, 1976) [in Russian].
6. Klimuk P. I., Zabelina I. A., Gogolev V. A. Visual Observations and Dirtying of Optics in Outer Space, 220 p. (Mashinostroenie, Leningrad, 1983) [in Russian].
7. Kobak V. O. Radar Reflectors, 248 p. (Sov. Radio, Moscow, 1975) [in Russian].
8. Koshmarov Yu. A., Ryzhov Yu. A. Applied Dynamics of Rarified Gas, 184 p. (Mashinostroenie, Moscow, 1977) [in Russian].
9. Ravdel’ A. A., Ponomareva A. M. (Eds.) Short handbook of physicochemical quantities, 232 p. (Khimiya, Leningrad, 1983) [in Russian].
10. Kucherenko E. T. Handbook of Physical Principles of Vacuum Technology, 264 p. (Vyshcha Shkola, Kiev, 1981) [in Russian].
11. Neiman M. B., Kovarskaya B. M., Strizhkova A. S., et al. On the mechanism of the thermal destruction of hardened epoxide resins. Dokl. Akad. Nauk SSSR, 135 (5), 1147—1149 (1960) [in Russian].
12. Shuvalov V. A., Kochubey G. S., Priymak A. I., Pismenniy N. I. High-altitude spacecraft power losses of solar arrays as a result of interaction with environment. Kosm. nauka tehnol., 10 (4), 39—49 (2004) [in Russian].
13. ECSS-Q-70-01 A-2002. Space product assurance. Cleanliness and contamination control. (2002).

14. Tribble A. C., Boyadjtan B., Davis J., et al. Contamination control engineering design guidelines for the aerospace community. NASA Contractor Report, No. 4740, 126 p. (1996).
https://doi.org/10.2514/6.1996-4375