The nonlinear interaction of the whistler wave with the inertial alfven wave in the magnetosphere of the Earth

1Fedun, VN, 2Yukhimuk, AK, 3Voitsekhovska, AD, 4Cheremnykh, ОК
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
3Main Astronomical Observatory of the NAS of Ukraine, Kyiv, Ukraine
4Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2002, 8 ;(5-6):096-101
https://doi.org/10.15407/knit2002.05.096
Publication Language: Russian
Abstract: 
On the basis of two-fluid magnetohidrodynamic the nonlinear parametric interaction of the pump whistler wave with higth frequency electron acoustic wave and the inertial Alfven wave in the auroral magnetosphere with a low plasma parameter β is considered. The nonlinear dispersion equation for three-wave interaction, the growth rate and the time of development of the parametric decay instability are found. The theoretical results are used for the analysis of the experimental data obtained during satellite inverstigations.
Keywords: magnetosphere plasma, waves, whistler
References: 
1. Akhiezer A. I., Akhiezer I. A., Polovin R. V., et al. Plasma Electrodynamics, 720 p. (Nauka, Moscow, 1974) [in Russian].
2. Lyatsky V. B., Maltsev Yu. P. Magnetosphere-Ionosphere Coupling, 192 p. (Moscow, Nauka, 1983) [in Russian].
3. Yukhimuk A. K., Fedun V. N., Yukhimuk V. A., Ivchenko V. N. Parametric excitation of upper hybrid and kinetic alfven waves in a magnetized plasma. Kosm. nauka tehnol., 4 (1), 108— 112 (1998) [in Russian].
4. Yukhimuk A. K., Fedun V. N., Yukhimuk V. A., Fal'ko O. G. Generation of electromagnetic radiation by an upper hybrid pumping wave in a magnetized plasma. Kosm. nauka tehnol., 4 (1), 102—107 (1998) [in Russian].
5. Clark A. E., Seyler C. E. Electron beam formation by small-scale oblique inertial Alfven waves. J. Geophys. Res., 104, 17233—17249 (1989).
https://doi.org/10.1029/1999JA900212
6. Dubnin E. M. Satelitte observations of fine scale structure in auroral field-aligned current system. In: Physics of magnetic flux ropes (A92-31201 12-75), 555—564 (American Geophysical Union, Washington, DC, 1990).
7. Dubouloz N., Pottelette R., Malingre M., Treumann R. A. Generation of broadband electrostatic noise by electron acoustic solitons. Geophys. Res. Lett., 18 (2), 155—158 (1991).
https://doi.org/10.1029/90GL02677
8. Gurnett D. A., Frank L. A. A region of intense plasma wave turbulence on auroral field lines. J. Geophys. Res., 82, 1031 — 1050 (1977).
https://doi.org/10.1029/JA082i007p01031
9. Gurnett D. A., Shawhan S. D., Shaw R. R. Auroral hiss, Z mode radiation, and auroral kilometric radiation in the polar magnetosphere: DE-1 observations. J. Geophys. Res., 88, 329—340 (1983).
https://doi.org/10.1029/JA088iA01p00329
10. Khotyaintsev Y., Ivchenko N., Stasiewicz K., Berthomier M. Electron Energization by Alfven Waves: Freja and Sounding Rocket Observations. Phys. scr., 84, 150—155 (2000).
11. Singh S. V., Lakhina G. S. Generation of electron-acoustic waves in the magnetosphere. Planet, and Space Sci., No. 49, 107—114 (2001).
12. Tokar R. L., Gary S. P. Electrostatic hiss and the beam driven electron acoustic instability in the dayside polar cusp. Geophys. Res. Lett., 11, 1180—1183 (1984).
https://doi.org/10.1029/GL011i012p01180
13. Tokar R. L., Gary S. P. The electron-acoustic mode. Phys. Fluids, 28, 2439—2441 (1985).
https://doi.org/10.1063/1.865250
14. Winglee R. M., Pritchett P. L., Dusenbery P. B., et al. Particle acceleration and wave emissions associated with the formation of auroral cavities and enhancements. J. Geophys. Res., 93, 14567—14590 (1988).
https://doi.org/10.1029/JA093iA12p14567
15. Yukhimuk A. K., Fedun V. M., Sirenko E. K., et al. Parametric interaction of whistler waves and kinetic Alfven waves in the space plasmas. Kinematics and Physics of Celestial Bodies. Suppl., No. 3, 483—489 (2000).