Generation of the kinetic alfven wave and lower hybrid wave in space plasma

1Yukhimuk, AK, 2Fedun, VN, 3Voitenko, Yu., 1Sirenko, EK, 4Yukhimuk, VA
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
3Solar-Terrestrial Centre of Excellence, BIRA-IASB, Brussels, Belgium
4Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; Newcastle University , Newcastle, Australia
Kosm. nauka tehnol. 2001, 7 ;(Suppl. 2):059-066
https://doi.org/10.15407/knit2001.02s.059
Publication Language: English
Abstract: 
Satellite observations show close relationship between the whistlers and lower-hybrid waves in space plasmas. Intense whistler waves generated by lightning discharges [Kelley, 1990] or by quasimonochromatic VLF (very low frequency) transmitters can be unstable and cause the three-wave parametric interaction. Work [Bell, 1994] demonstrates experimental results of excited lower hybrid waves by VLF whistler mode waves in the topside ionosphere and near magnetosphere. The Kinetic Alfven waves are often observed by satellites [Louran], [Volokitin, 1989]. In this paper we analytically consider a possible mechanism of this Relationship, i.e., parametric interaction of whistler pump waves with lower-hybrid and the Alfven waves in magnetized plasma with small plasma parameter. In the dynamics of the Alfven waves the kinetic effects (finite ion Larmor radius and electron inertia) are taken into account A nonlinear dispersion equation describing three-wave interaction is obtained in the framework of two-fluid magnetohydrodynamics. The instability growth rates and the time of instability development are found. Our theoretical investigation shows, that the whistler mode will be an effective source of the lower hybrid and the Alfven waves in the magnetospheric plasma. This nonlinear process can take place in the Earth magnetosphere and in the Sun atmosphere. The products of the decay, i.e., the lower-hybrid and the kinetic Alfven waves, can effectively interact with magnetospheric and sun plasmas.
References: 
Benz A. O., Smith D. F. Stochastic acceleration of ele trons in Solar flares. J. Geophys. Res., 107 (2), 299—309 (1987).
Berger R. L., Chen L. Exitation of fast waves by slow waves near the lower-hybrid frequency. Phys. Fluids, 19, 1392—1399 (1976).
https://doi.org/10.1063/1.861643
Barrington R. E., Berlose G. S. Preliminary results from the very-low-frequency receiver on board Canadas Alouette satellite. Nature, 198, 651—656 (1963).
https://doi.org/10.1038/198651a0
Bell T. F., Ngo H. D. Electrostatic waves stimulated by coherent VLF signals propagating in and near the inner radiation belt. J. Geophys. Res., 93, 2599 (1988).
https://doi.org/10.1029/JA093iA04p02599
Bell T. F., Inan U. S., Sonwalnar V. S., et al. DE-1 observations of lower hybrid waves excited by VLF whistler mode waves. Geophys. Res. Lett., 48, 393 (1991).
https://doi.org/10.1029/90GL02598
Bell T. F., Inan U. S., Lauben D., et al. DE-1 and COSMOS 1809 observations of lower hybrid waves excited by VLF whistler mode waves. Geophys. Res. Lett., 21 (8), 653—656 (1994).
https://doi.org/10.1029/94GL00196
Brice N. M., Smith R. L. Recording from satellite Alouette-2-A very low frequency plasma resonance. Nature, 203, 926—927 (1964).
https://doi.org/10.1038/203926a0
Chin Y. In: Planet and Space Sci., 20, 711 (1972).
https://doi.org/10.1016/0032-0633(72)90155-9
Chian A. C.-L., Lopes S. R., Alves M. V. Nonlinear excitation of Langmuir and Alfven waves by auroral whistler waves in the planetary magnetosphere. Astron. and Astrophys., 288, 981—984 (1994).
Gurnett D. A. A satellite study of VLF hiss. J. Geophys. Res., 71 (23), 5599—5615 (1966).
https://doi.org/10.1029/JZ071i023p05599
Gucha S., Sarkar R. Parametric decay of a whistler wave at the difference frequency of two electromagnetic waves in a plasma. J. Plasma Physics, 47 (1), 115—123 (1991).
Grach S. M. Parametric Instability of VLF Waves in the Upper Ionosphere. Radiophysica, 18 (11), 1627—1637 (1975) [in Russian].
Hasegava A., Chen L. Kinetic processes in plasma heating by resonant mode conversion of Alfven wave. Phys. Fluids, 30, 1924 (1976).
https://doi.org/10.1063/1.861427
Hui C.-H., Seyler C. E. Electron acceleration by Alfven waves in the magnetosphere. J. Geophys. Res., 97 (A4), 3953—3963 (1992).
https://doi.org/10.1029/91JA03101
Ionson I. A. Resonant absorption of Alfvenic surface waves and heating of solar coronal loops. Astrophys. J., 226 (2), 650—673 (1978).
https://doi.org/10.1086/156648
Kelley M. C., Ding J. G. Intence Ionospheric and Magnetic Field Pulses Generated by Lighting. Geophys. Res. Lett., 17 (12), 2221—2224 (1990).
https://doi.org/10.1029/GL017i012p02221
Kletzing C. A. Electron acceleration by kinetic Alfven waves. J. Geophys. Res., 99, 11095—11103 (1994).
https://doi.org/10.1029/94JA00345
Lakhina G. S., Buti B. Stochastic acceleration by lower hybrid waves in the solar corona. Solar Phys., 165 (2), 329—336 (1996).
https://doi.org/10.1007/BF00149717
Leyser T. B. Parametric interaction between hybrid and low hybrid waves in heating experiments. Geophys. Res. Lett., 18 (3), 408—411 (1991).
https://doi.org/10.1029/91GL00136
Louran P., Wahlund J. E., Chust T. Observation of Kinetic Alfven waves by the FREJA Spacecraft. Geophys. Res. Lett., 21 (17), 1847—1850 (1994).
https://doi.org/10.1029/94GL00882
Murtaza G., Shukla P. K. Nonlinear generation of electromagnetic waves. J. Plasma Phys., 31, 423—436 (1984).
https://doi.org/10.1017/S0022377800001756
Sharma R. P., Tripathi Y. K., Hadi A., et al. Parametric Excitation of Electrostatic Waves by Electron Plasma Waves. J. Geophys. Res., 97, 4275—4281 (1992).
https://doi.org/10.1029/91JA02379
Shukla P. K., Stenflo L. Nonlinear Alfven waves. Phys. Scripta, 60, 32—35 (1995).
https://doi.org/10.1088/0031-8949/1995/T60/004
Shukla P. K., Mamedow M. A. Nonlinear decay of a propagating lower-hybrid wave in a plasma. J. Plasma Phys., 19 (1), 87—96 (1978).
https://doi.org/10.1017/S0022377800023679
Scarf F. L., Fredrics R. W., Smith E. J., et al. OGO-5 observations of LHR noise emissions and whistlers near the plasmapause at several Earth radii during a large magnetic storm. J. Geophys. Res., 77 (10), 1776—1793 (1984).
https://doi.org/10.1029/JA077i010p01776
Stenflo L. Stimulated scattering of large amplitude waves in the ionosphere. Phys. Scripta, 30, 166—169 (1990).
https://doi.org/10.1088/0031-8949/1990/T30/022
Taranenko Yu. N., Chmyrev V. M. Generation of Oblique Alfven Waves by the Parametric Instability of Whistlers in the Near-Earth Plasmas. Geomagnetizm i Aeronomiia, 27, 664—665 (1987) [in Russian].
Taranenko Yu. N., Chmyrev V. M. Parametric Interaction of Whistler and Electron Cyclotron Waves in the ionospheric Plasma. Geomagnetizm i Aeronomiia, 29, 459—464 (1989) [in Russian].
Titova E. E., Di V. I., Yurov V. E., et al. Interaction between VLF waves and turbulent ionosphere. Geophys. Res. Lett., 11, 323 (1984).
https://doi.org/10.1029/GL011i004p00323
Stéfant R. J. Alfven wave damping from finite gyroradius coupling to the ion acoustic mode. Phys. fluids, 13 (2), 440—450 (1970).
https://doi.org/10.1063/1.1692938
Volokitin A. S., Dubinin E. M. Theturbulence of Alfven waves in the polar magnetosphere of Earth. Planet. Space Sci., 37 (7), 761—768 (1989).
https://doi.org/10.1016/0032-0633(89)90127-X
Yukhimuk A. K. Plasma phenomenons in geophysics, 165 p. (Nauk. dumka, Kyiv, 1982) [in Russian].
Yukhimuk A. K., Kotsarenko N. Ya., Yukhimuk V. A. Nonlinear interaction of Alfven waves in solar atmosphere. In: Proc. 26th ESLAB Symp., Killarny, 16-19 June, Noordwijk, 337—341 (1992).
Yukhimuk V. A., Voitenko Yu. M., Fedun V. M., Yukhimuk A. K. Generation of kinetic Alfven waves by upper-hybrid pump waves. J. Plasma Physics, 60 (3), 485—495 (1998).