Design of technical systems using simulation and hardware modeling complexes

1Prysiazhnyi, VI
1National Center of Space Facilities Control And Test, State Space Agency of Ukraine, Kyiv, Ukraine
Space Sci. & Technol. 2024, 30 ;(5):62-74
https://doi.org/10.15407/knit2024.05.062
Publication Language: Ukrainian
Abstract: 
Context. Radar means of space control are large science-intensive technical systems. The development of the new generation of radar stations is a complex process related not only to the search for new technical solutions and technologies but also to the assessment of their effectiveness in terms of parameters and cost.
     The domestic school of designing and creating space control systems has great scientific and technical potential, which allows the developmentof promising radars. However, the development of such systems is carried out with the exception of several stages, which are established according to the regulatory procedure, since the creation of functionally finished systems and the system as a whole is possible only at the exploitation place, therefore the manufacturing process is startedimmediately. The bench equipment used for product testing due to its monofunctionality cannot provide the verificationof functionally finished systems. Ensuring the effective implementation of the objective functions requires a long and expensive process of finding new circuit solutions using the developed equipment as a test bench, which consumes its resources. Solving the problem is possible only by creating a tool that would allow the developer to conduct the entire list of tests of the entire system hierarchy directly during the development process. Such a tool can be created using simulation-hardware modeling complexes.
     Objective. The goal of the work is to study the possibility of developing simulation-hardware modeling complexes for testing prospective science-intensive complex technical systems.
    Method. The method of imitation and semi-natural modeling is used.
    Results. The main methods of building a simulation-hardware complex have been developed and the possibility of using
simulation tools, models, and standard technological radar equipment to form its architecture has been substantiated. It is
shown that the creation of new complexes can be based both on the use of already existing systems in the operational radar and on the development of new elements
     Conclusions. The presence of scientific and technical development and practical experience of the domestic developer of the space control radar makes the implementation of the new complex quite realistic, and the implementation of the test technology and practice using the simulation hardware complex will allow to reduce the total development costs.
Keywords: big technical systems, model, radar stations, simulation, simulation hardware complex, tests
References: 
1. Holkin D. V., Prysiazhnyi V. I., Varakuta V. P., Khudov H. V. ta in. (2006). Osoblyvosti zastosuvannia kosmichnykh system sposterezhennia dlia rannioho poperedzhennia pro povitrianyi napad. Systemy ozbroiennia i viiskova tekhnika, No 1 (5),36-40.
2. Hryzlo A. A., Hryb D. A., Leshchenko S. P. (2006). Analyz opyta postroeniia imitatsionnykh kompleksov. Systemy obrobky informatsii, vyp. 5 (54), 17—24.
3. Dodonov A. H., Putiatyn V. H., Valetchyk V. A. (2004). Model vzaimodeistviia prostranstvenno-raznesennykh bortovykh informatsionno-upravliaiushchikh system. Reiestratsiia, zberihannia i obrobka danykh, 6, № 4, 75-84.
4. Kontseptsiia realizatsii derzhavnoi polityky u sferi kosmichnoi diialnosti na period do 2032 roku. K.: DKA Ukrainy, 2012. 48 p.
5. Kostrzhytskyi V. K. (2013). Nesekretno o sovershenno sekretnom. Dnepropetrovsk, 658 р.
6. Lavrych Yu. N. (2018). Osobennosti nauchnoho obespecheniia sozdaniia perspektivnykh obraztsov radyoelektronnoi apparatury. Nauka ta innovatsii, 14, No 1, 15-25.
7. Lavrych Yu. M., Bystrov M. I., Prysiazhnyi V. I., Piaskovskyi D. V. (2023). Realizatsiia tekhnolohii podviinoho vykorystannia zasobiv kontroliu kosmichnoho prostoru. Kosmichna nauka i tekhnolohiia, 29, No 4, 127-140.
8. Lavrych Yu. M. Plaksin S. V., Pohorila L. M., Bystrov M. I. (2021). Deiaki osoblyvosti prykladnoi nadiinosti RLS KKP. Kosmichna nauka i tekhnolohiia, 23, № 3, 13-26.
9. Prysiazhnyi V. I., Yatskiv Ya. S. (2021). Pro spivpratsiu Natsionalnoi akademii nauk Ukrainy i Derzhavnoho kosmichnoho ahentstva Ukrainy zi stvorennia systemy kontroliu ta analizu kosmichnoi obstanovky. Visnyk Natsionalnoi akademii nauk Ukrainy, № 12, 85-89.
10. Prysiazhnyi V. Y., Prybylev Yu. B., Levenko A. S., Pauk O. L. (2014). Perspektivy vozdushno-kosmicheskoi oborony sovremennoi Ukrainy. Suchasni informatsiini tekhnolohii u sferi bezpeky ta oborony, Np 3 (21), 102-106.
11. Rozrobka tekhnolohii vidnovlennia pratsezdatnosti radioelektronnoi aparatury shliakhom rozrobky analohu vyrobu, shcho vidmovyv. Tsyfrovi komirky 2TIa: Naukovo-doslidna robota. Instytut transportnykh system i tekhnolohii NAN Ukrainy, 2023. 600 p.
12. Ulianov O. M., Reznychenko A. M., Prysiazhnyi V. Y., Mamarev V. N., Ozhynskyi V. V. i dr. (2019). Sozdanie radioteleskopa RT-32 na baze antennoi systemy MARK-4B. 1. Proekt modernyzatsiy i pervye rezultaty. Radiofizyka i radioastronomiia, 24, No 2, 87-116.
13. Ulianov O. M., Reznychenko A. M., Prysiazhnyi V. Y., Mamarev V. N., Ozhynskyi V. V. i dr. (2019). Sozdanie radioteleskopa RT-32 na baze antennoi systemy MARK-4B 2. Otsenka vozmozhnosti provedenyia spektralnykh nabliudeniy radioastronomicheskikh ob’ektov. Radiofizyka i radioastronomiia, 24, No 3, 163-183.
14. Chumak B.O., Kulahin K. K., Solonets O. I. (2000). Problemni pytannia shchodo stvorennia vymiriuvalno-obchysliuvalnoho kompleksu podviinoho pryznachennia. Zbirnyk naukovykh prats III Ukrainskoi konferentsii korystuvachiv aerokosmichnoi informatsii. K., 100-101.
15. AN/PLM-4 Radar Signal Simulator (RSS) — ITT Exelis Inc. URL: http://www.exelisinc.com/solutions/AN-PLM-4-Radar
Signal-Simulator/Pages/default.aspx (Last accessed: 27.05.24).
16. Baek J. (2002). A survey on Reflective Memory Systems. Proc. 15th CISL Winter Workshop (February 2002, Kushu, Japan).
URL:http://www.exelisinc.com/solutions/AN-PLM-4-Radar-Signal-Simulator/ Pages /default.aspx (Last accessed: 27.05.24).
17. Lavrich Yu. M., Plaksin S. V., Pogorila L. M. (2022). Innovative technologies for perspective information systems. Science and Innovations, 18 (4), 106-119.