Feed-forwardcontrol of additional deployment of a space tether with recovery of its initial vertical orientation

1Wang, C, 2Zakrzhevskii, AE
1Department of Navigation, Guidance, and Control, Northwestern Polytechnical University, Shaanxi, P. R. China
2S.P. Timoshenko Institute of Mechanics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Space Sci. & Technol. 2024, 30 ;(5):03-18
https://doi.org/10.15407/knit2024.05.003
Publication Language: English
Abstract: 
The additional deployment of a two-body space tether with a massless cable is studied to develop a feed-forward control by the mode of increasing the length of a previously deployed space tether with the recovery of its initial vertical orientation. The motion equations of the variable length tether, written in spherical coordinates, are used for it. The developed feed-forward control by the length of the tether provides the necessary change of its angular momentum under the effect of the gravitational torque. The novelty of the results consists of developing a new approach to creating control for underactuated mechanical systems, which have a number of control channels less than the number of degrees of freedom. Here, a tether length control is developed, which allows for the control of its motion about the pitch axis, using only one tether length control channel. The passive but controlled effect of the gravitational torque on the tether is used for this purpose. To achieve this effect, it is proposed to impose restrictions on the motion of the tether about the pitch axis, which formally reduces the number of system degrees of freedom. This allows the implementation of the set motion mode with control only on the remained degree of freedom. The type of such restrictions is defined based on physical reasons. By accounting for all requirements for the mode of additional deployment, it is possible to develop the law of varying the pitch angle over time, which is described by a seventh-order polynomial. Detailed numerical research on the effect of mode parameters, such as the duration of deployment and expected shape of the pitch angle law vs. time, on the length of the unrolled tether and the character of its behavior during deployment is conducted. An example is provided numerically for the application of the developed method. Numerical simulation of the mode is carried out within the integration of the initial value problem for the Hill-Clohessy-Wiltshire equations. Quantitative estimation of errors of numerical simulation is conducted. The results of the calculations are illustrated graphically.
Keywords: control, deployment, length variation, space tether, underactuated system, vertical position
References: 
1. Banerjee A. K., Kane T. R. (1982). Tether deployment dynamics. Appl. Math. Comput., 30, 347-366.
2. Barkow B. (2003). Controlled deployment of a tethered satellite system. Proc. Appl. Math. Mech., 2, 224-225.
https://doi.org/10.1002/pamm.200310097
3. Barkow B., Steindl A., Troger H., Wiedermann G. (2003). Various methods of controlling the deployment of a tethered satellite. J. Vib. Control., 9, 18-—208.
https://doi.org/10.1177/1077546303009001747
4. Beletsky V. V., Levin E. M. (1993). Dynamics of Space Tether Systems. Univelt, San Diego.
5. Bindra Udai, Zhu Zheng H. (2016). Ground-based testing of space tether deployment using an air-bearing inclinable turntable. Int. J. Space Sci. and Engineering, 4, No. 1, 1-17.
https://doi.org/10.1504/IJSPACESE.2016.078571
6. Cantafio L. J., Chobotov V. A., Wolfe M. G. (1977). Photovoltaic gravitationally stabilized, solid-state satellite solar power
station. J. Energy, 1, 352-363.
https://doi.org/10.2514/3.62346
7. Casas M. F. (2015). Dynamics and Control of Tethered Satellite Formations in Low-Earth Orbits. PhD Thesis Universitat Politecnica de Catalunya.
8. Chen S., Li Aijun, Wang Changqing (2020). Analysis of the deployment of a three-mass tethered satellite formation. IOP  Conf. Ser.: Mater. Sci. Eng. 984 012028.
https://doi.org/ 10.1088/1757-899X/984/1/012028
9. Clohessy W. H., Wiltshire R. S. (1960). Terminal guidance system for satellite rendezvous. JGCD, 27, 653-658.
https://doi.org/10.2514/8.8704
10. Dong Z., Zhang Lei, Li Aijun, Wang C., Shi Q. S. (2022). Adaptive super-twisting control for deployment of spacetethered system with unknown boundary disturbances. Proc. IMechE. Part G: J. Aerospace Engineering, 236, No. 13, 2739-2750.
https://doi.org/10.1177/09544100211068909
11. Jia C., Meng Z., Wang B. (2023). Deployment of three-body chain-type tethered satellites in low-eccentricity orbits using only tether. Space Sci. and Technology, 3, No. 11, 1-9.
https://doi.org/10.34133/space.0070
12. Levin E. M. (1983). On deployment of lengthy tether in orbit. Kosmicheskie issledovanija, 21, 678-688.
13. Levin E. M. (2007). Dynamic Analysis of Space Tether Missions. Univelt, San Diego.
14. Lu H., Wang C., Li A., Guo Y. (2024). Sliding mode control strategy of spinning electrodynamic tether formation during its spin-up process. IEEE Trans. Aerosp. Electron. Syst., 60, No. 1, 449-462.
https://doi.org/10.1109/TAES.2023.3327700
15. Lu H., Yang H., Wang C., Li A. (2024). Nonlinear deformation and attitude control for spinning electrodynamic tether systems during spin-up stage. Nonlinear Dyn. (Early Access,
https://doi.org/10.1007/s11071-024- 09415-z).
16. Lur’e A. (2002). Analytical Mechanics. Springer. https://doi.org/10.1007/978-3-540-45677-3
17. Ma Zhiqiang, Sun Guanghui (2016). Full-order sliding mode control for deployment/retrieval of space tether system. IEEE
Int. Conf. on Systems, Man, and Cybernetics (SMC), 407-412,
https://doi.org/10.1109/SMC.2016.7844275
18. Misra A. K. (2008). Dynamics and control of tethered satellite systems. Acta Astronautica, 63, 1169-1177.
19. Modi V. J., Misra A. K. (1978). Deployment dynamics of tethered satellite systems. AIAA Paper, 1398, 1-10.
https://doi.org/10.2514/6.1978-1398
20. Padgett D. A., Mazzoleni A. P. (2007). Analysis and design for no-spin tethered satellite retrieval. J. Guid. Control. Dyn., 30  1516-1519.
https://doi.org/10.2514/1.25390
21. Peters T. V., Francisco José, Valero Briz, Olmos Diego Escorial, Lappas V., Jakowski P., Gray I., Tsourdos A., Biesbroek H.
R. (2018). Attitude Control Analysis of Tethered De-orbiting Acta Astronautica, 146, 316-331.
https://doi.org/10.1016/j.actaastro.2018.03.016
22. Rupp C. C., Kissel R. R. (1978). Tetherline system for orbiting satellites. U. S. Patent No. 4083520, April II, 1978, Int. Cl. B. 64 G 1/100, US Cl. 244/167; 244/161
23. Rupp C. C., Laue J. H. (1978). Shuttle/Tethered Satellite System. J. Astronaut. Sci., 26, 1-17.
24. Stadnyk K., Ulrich S. (2020). Validating the Deployment of a Novel Tether Design for Orbital Debris Removal. JSR, 57, No. 6.
https://doi.org/10.2514/1.A34781
25. Steindl A., Troger H. (2003). Optimal control of deployment of a tethered subsatellite. Nonlinear Dyn., 31, 257-274.
https://doi.org/10.1023/A:1022956002484
26. Steiner W., Steindl Α., Troger H. (1995). Center manifold approach to the control of a tethered satellite system, Appl. Math.
Comput., 70, 315-327.
https://doi.org/10.1023/A:1022956002484
27. Sun Guanghui, Zhu Z. H. (2014). Fractional-Order Tension Control Law for Deployment of Space Tether System. J. Guid. Control. Dyn., 37, No. 6, 157—167. https://doi.org/ 10.2514/1.G000496
28. Sun Guanghui, Zhu Z. H. ( 2014). Fractional order tension control for stable and fast tethered satellite retrieval. Acta Astronautica, 104, No. 11, 304-312.
https://doi.org/10.1016/j.actaastro.2014.08.012
29. Swet C. J. (1970). Method for deployment and stabilizing orbiting structures. U.S. Patent Office No. 3532298, Oct. 6, 1970, Int. Cl. B 64 G 1/00, U.S. Cl. 244-1.
30. Tian H., Li A., Wang Yu., Wang C. (2023). Underactuated Attitude Tracking Control of Tethered Spacecraft for Deployment and Spin-up. Advs in Space Res., 71, No. 11.
https://doi.org/10.1016/j.asr.2023.01.052
31. Tirop P., Jingrui Zh. (2019). Review of Control Methods and Strategies of Space Tether Satellites. Amer. J. Traffic and Transportation Engineering, 4, No. 5, 137—148.
https://doi.org/ 10.11648/j.ajtte.20190405.11
32. Wang Ch., Zabolotnov Yu. M. (2017). Control over the deployment of an orbital tether system of great length. Vestnik of Samara Univ. Aerospace and Mechanical Engineering, 16, No. 2, 7—17.
https://doi.org/ 10.18287/2541-7533-2017-16-2-7-17
33. Wen Hao, Zhu Z. H., Jin D. P., Hu Haiyan (2016). Space Tether Deployment Feedback Control with Explicit Tension Constraint and Saturation Function. J. Guid. Control. Dyn., 39, No. 4, 1-6.
https://doi.org/ 10.2514/1.G001356
34. Williams P. (2008). Deployment/retrieval optimization for flexible tethered satellite systems. Nonlinear Dyn., 52, 159-179.
https://doi.org/10.1007/s11071-007-9269-3
35. Xu R., Özgüner Ümit (2008). Sliding mode control of a class of underactuated systems. Automatica, 44, No. 1, 233-241.
https://doi.org/10.1016/j.automatica.2007.05.014
36. Yu B. S., Huang Z., Geng L. L., Jin D. P. (2019). Stability and ground experiments of a spinning triangular tethered satellite formation on a low earth orbit. Aerospace Sci. and Technology, 92, No. 9, 595-604.
https://doi.org/10.1016/j.ast.2019.06.012
37. Yu B. S., Wen H., Jin D. P. (2018). Review of deployment technology for tethered satellite systems. Acta Mech. Sinica, 34, No. 4, 754-768.
https://doi.org/10.1007/s10409-018-0752-5
38. Zakrzhevskii A. E. (2016). Method of Deployment of a Space Bodies tether with Alignment it to the Local Vertical. Patent of UkraineUA 111298, u 2016 03712 from 10.11.15, Bul. “Promyslova vlasnist”, 21, 1—4.
39. Zhang K., Lu K., Gu X., Fu C., Zhao S. (2022). Dynamic Behavior Analysis and Stability Control of Tethered Satellite Formation Deployment. Sensors, 22, 62.
https://doi.org/10.3390/s22010062
40. Zhang F., Huang P. (2019). A novel underactuated control scheme for deployment/retrieval of space tethered system
Nonlinear Dyn., 95, 3465-3476.