An advanced approach for definition of the "Milky Way galaxies-analogues"

1Vavilova, IB, 2Fedorov, PN, 1Dobrycheva, DV, 1Kompaniiets, OV, 1Sergijenko, O, 1Vasylenko, AA, 2Dmytrenko, AM, 2Khramtsov, VP, 3Vasylkivskyi, EV
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Institute of Astronomy of Kharkiv National University, Kharkiv, Ukraine
3Institute of Radio Astronomy, NAS of Ukraine, Kharkiv, Ukraine
Space Sci. & Technol. 2024, 30 ;(4):81-90
https://doi.org/10.15407/knit2024.04.081
Publication Language: English
Abstract: 
Our Galaxy — the Milky Way — has certain features of the structure and evolution. The morphological, photometric, kinematic, and chemodynamical properties are usually considered in search for the Milky Way galaxies-analogues (MWAs). The discovery of MWA galaxies with a larger number of simultaneous selection parameters, as well as more stringent constraints on a given parameter, yields a sample of MWA galaxies with properties closer to the true properties of the Milky Way. So, in general, such MW parameters as the morphological type, luminosity, color indices, structural parameters (size, bar, bulge, thin and thick disks, inner ring, halo), bulge-to-total ratio, stellar mass, star formation rate, metallicity, and rotation velocity were used in various combinations for comparison with other galaxies. However, the offset of some MW features in the multi-parameter space of MWAs features should be significant.
      The paper aims to give a brief overview of the problematics and to present our approach for studying Milky Way and MWAs matching characteristics (this project is supported by the National Research Fund of Ukraine). We propose to enlarge as much as possible the number of Milky Way features and compile various samples of MWAs in our co-moving cosmological volume for their further optimization. Such features can include 3D-kinematics of star’s movement in certain regions, low oxygen content on the periphery, low nuclear activity, and the lack of significant merging over the past 10 Gyrs (isolation criterion). This approach will make it possible to widely formulate the necessary and sufficient conditions for the detection of MWA galaxies as well as to reveal other MW multiwavelength features.
Keywords: black hole, machine learning, Milky Wat, Milky Way galaxies analoguesmorphology, myltiwavelength analysis
References: 
1. Banik, I., Thies, I., Truelove, R., et al. (2022). 3D hydrodynamic simulations for the formation of the Local Group satellite planes. Mon. Notic. Roy. Astron. Soc., 513, Issue 1, 129-158. https://doi.org/10.1093/mnras/stac722
2. Becerra-Vergara E. A., Arghelles C. R., Krut A., et al. (2021). Hinting a dark matter nature of Sgr A* via the S-stars. Mon. Notic. Roy. Astron. Soc. Lett., 505, Issue 1, L64-L68. https://doi.org/10.1093/mnrasl/slab051
3. Bland-Hawthorn, J., Gerhard, O. (2016). The galaxy in context: Structural, kinematic, and integrated properties. Annu. Rev. Astron. and Astrophys., 54, 529-596. https://doi.org/10.1146/annurev-astro-081915-023441
4. Boardman, N., Zasowski, G., Seth, A., et al. (2020). Milky Way analogues in MaNGA: multiparameter homogeneity and comparison to the Milky Way. Mon. Notic. Roy. Astron. Soc., 491, Issue 3, 3672-3701. https://doi.org/10.1093/mnras/stz3126
5. Boardman, N., Zasowski, G., Newman, J. A., et al. (2020). Are the Milky Way and Andromeda unusual? A comparison with Milky Way and Andromeda analogues. Mon. Notic. Roy. Astron. Soc., 498, Issue 4, 4943-4954. https://doi.org/10.1093/mnras/staa2731
6. Chandra, V., Semenov, V. A., Rix, H.-W., et al. (2024). The three-phase evolution of the Milky Way. Astrophys. J., 972, Issue 1, id.112, 16 p. https://doi.org/10.3847/1538-4357/ad5b60
7. Deason, A. J., Fattahi, A., Frenk, C. S., et al. (2020). The edge of the Galaxy. Mon. Notic. Roy. Astron. Soc., 496, Issue 3, 3929-3942. https://doi.org/10.1093/mnras/staa1711
8. Denyshchenko, S. I., Fedorov, P. N., Akhmetov, V. S., et al. (2024). Determining the parameters of the spiral arms of the Galaxy from kinematic tracers based on Gaia DR3 data. Mon. Notic. Roy. Astron. Soc., 527, Issue 1, 1472-1482. https://doi.org/10.1093/mnras/stad3350
9. de Vaucouleurs, G., Pence, W. D. (1978). Outsider’s view of the galaxy: Photometric parameters, scale lengths, and absolute magnitudes of the spheroidal and disk components of our galaxy. Astron. J., 83, 1163-1173. https://doi.org/10.1086/112305
10. Dmytrenko, A. M., Fedorov, P. N., Akhmetov, V. S., et al. (2023). The vertex coordinates of the Galaxy’s stellar systems according to the Gaia DR3 catalogue. Mon. Notic. Roy. Astron. Soc., 521, Issue 3, 4247-4256. https://doi.org/10.1093/mnras/stad823
11. Dobrycheva, D. V., Vavilova, I. B., Melnyk, O. V., Elyiv, A. A. (2018). Morphological type and color indices of the SDSS DR9 galaxies at 0.02 < z  0.06. Kinematics and Physics of Celestial Bodies, 34, Issue 6, 290. doi: 10.3103/S0884591318060028
12. Dobrycheva, D., Khramtsov, V., Vasylenko, M., et al. (2023). The CNN classification of galaxies by their image morphological peculiarities. IAU Proc. (The Predictive Power of Computational Astrophysics as a Discovery Tool. Eds. D. Bisikalo, D. Wiebe, C. Boily), 362, 111-115. https://doi.org/10.1017/S1743921322001259
13. Dodds-Eden, K., Gillessen, S., Fritz, T. K., et al. (2011). The two states of Sgr A* in the near-infrared: bright episodic flares on top of low-level continuous variability. Astrophys. J., 728, Issue 1, id. 37, 13 p. https://doi.org/10.1088/0004-637X/728/1/37.
14. Dubinski, J., Mihos, J. C., Hernquist, L. (1996). Using tidal tails to probe dark matter halos. Astrophys. J., 462, 576. https://doi.org/10.1086/177174
15. Elyiv, A. A., Melnyk, O. V., Vavilova, I. B., et al. (2020). Machine-learning computation of distance modulus for local galaxies. Astron. and Astrophys., 635, id. A124, 7 p. https://doi.org/10.1051/0004-6361/201936883
16. Etxaluze, M., Smith, H. A., Tolls, V., et al. (2011). The galactic center in the far-infrared. Astron. J., 142, Issue 4, id. 134, 9 p. https://doi.org/10.1088/0004-6256/142/4/134.
17. Fedorov, P. N., Akhmetov, V. S., Velichko, A. B., et al. (2021). Kinematics of the Milky Way from the Gaia EDR3 red giants and subgiants. M on. Notic. Roy. Astron. Soc., 508, Issue 2, 3055-3067. https://doi.org/10.1093/mnras/stab2821
18. Fedorov, P. N., Akhmetov, V. S., Velichko, A. B., et al. (2023). Mapping the kinematic parameters of the Galaxy from the
Gaia EDR3 red giants and sub-giants. Mon. Notic. Roy. Astron. Soc., 518, Issue 2, 2761—2774. https://doi.org/10.1093/
mnras/stac3218
19. Font, A. S., McCarthy, I. G., Belokurov, V. (2021). Can cosmological simulations capture the diverse satellite populations of observed Milky Way analogues? Mon. Notic. Roy. Astron. Soc., 505, Issue 1, 783-801. https://doi.org/10.1093/mnras/stab1332
20. Fraser-McKelvie, A., Merrifield, M., Arag\n-Salamanca, A. (2019). From the outside looking in: what can Milky Way analogues tell us about the star formation rate of our own galaxy? Mon. Notic. Roy. Astron. Soc., 489, Issue 4, 5030-5036. https://doi.org/10.1093/mnras/stz2493
21. Gerhard, O. (2011). Pattern speeds in the Milky Way. Memorie della Societa Astronomica Italiana Suppl., 18, 185. https://doi.org/10.48550/arXiv.1003.2489
22. Ghez, A. M., Salim, S., Weinberg, N. N., et al. (2008). Measuring distance and properties of the Milky Way’s central supermassive black hole with stellar orbits. Astrophys. J., 689, Issue 2, 1044-1062. https://doi.org/10.1086/592738
23. Goodwin, S. P., Gribbin, J., Hendry, M. A. (1998). The relative size of the Milky Way. Observatory, 118, 201-208.
24. Grand, R. J. J., Deason, A. J., White, S. D. M., et al. (2019). The effects of dynamical substructure on Milky Way mass estimates from the high-velocity tail of the local stellar halo. Mon. Notic. Roy. Astron. Soc. Lett., 487, Issue 1, L72-L76. https://doi.org/10.1093/mnrasl/slz092
25. Genzel, R., Eisenhauer, F., Gillessen, S. (2010). The Galactic Center massive black hole and nuclear star cluster. Rev. Modern Phys., 82, Issue 4, 3121-3195. h ttps://doi.org/10.1103/RevModPhys.82.3121
26. Hammer, F., Puech, M., Chemin, L., et al. (2007). The Milky Way, an exceptionally quiet galaxy: Implications for the formation of spiral galaxies. Astrophys. J., 662, Issue 1, 322-334. https://doi.org/10.1086/516727
27. Han, J. J., Conroy, C., Zaritsky, D., et al. (2024). Our halo of ice and fire: Strong kinematic asymmetries in the Galactic Halo. https://10.48550/arXiv.2406.12969
28. Jones, M. G., Sand, D. J., Karunakaran, A., et al. (2024). Gas and star formation in satellites of Milky Way analogs. Astrophys
J., 966, Issue 1, id. 93, 18 p. https://doi.org/10.3847/1538-4357/ad3076
29. Kafle, P. R., Sharma, S., Lewis, G. F., et al. (2014). On the shoulders of giants: Properties of the stellar halo and the Milky Way mass distribution. Astrophys. J., 794, Issue 1, id. 59, 17 p. https://doi.org/10.1088/0004-637X/794/1/59
30. Khramtsov, V., Vavilova, I. B., Dobrycheva, D. V., et al. (2022). Machine learning technique for morphological classification of galaxies from the SDSS. III. Image-based inference of detailed features. Space Science and Technology, 28, Issue 5, 27-55. https://doi.org/10.15407/knit2022.05.027
31. Konovalenko, A., Sodin, L., Zakharenko, V., et al. (2016). The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron., 42, Issue 1, 11-48. https://doi.org/10.1007/s10686-016-9498-x
32. Lau, R. M., Herter, T. L., Morris, M. R. et al. (2013). SOFIA/FORCAST Imaging of the circumnuclear ring at the galactic center. Astrophys. J., 775, Issue 1, id. 37, 16 p. https://doi.org/10.1088/0004-637X/775/1/37.
33. Licquia, T. C., Newman, J. A., Bershady, M. A. (2016). Does the Milky Way obey spiral galaxy scaling relations? Astrophys. J., 833, Issue 2, article id. 220, 15 p. https://doi.org/10.3847/1538-4357/833/2/220
34. Licquia, T. C., Newman, J. A., Brinchmann, J. (2015). Unveiling the Milky Way: A new technique for determining the optical color and luminosity of our Galaxy. Astrophys. J., 809, Issue 1, article id. 96, 19 p. https://doi.org/10.1088/0004-637X/809/1/96
35. Lindner, U., Einasto, J., Einasto, M., et al. (1995). The structure of supervoids. I. Void hierarchy in the Northern Local Supervoid. Astron. and Astrophys., 301- 329. https://doi.org/10.48550/arXiv.astro-ph/9503044
36. Mazurenko, S., Banik, I., Kroupa, P., et al. (2024). A simultaneous solution to the Hubble tension and observed bulk flow within 250 h-1 Mpc. Mon. Notic. Roy. Astron. Soc., 527, Issue 3, 4388-4396. https://doi.org/10.1093/mnras/stad3357
37. McGaugh, S. S. (2016). The surface density profile of the Galactic disk from the terminal velocity curve. Astrophys. J., 816, Issue 1, article id. 42, 18 p. https://doi.org/10.3847/0004-637X/816/1/42
38. Melnyk, O., Karachentseva, V., Karachentsev, I. (2015). Star formation rates in isolated galaxies selected from the Two-Micron All-Sky Survey. Mon. Notic. Roy. Astron. Soc., 451, Issue 2, 1482-1495. https://doi.org/10.1093/mnras/stv950
39. Miroshnichenko, A. P. (2009). The North Polar Spur as a jet of our Galaxy. Radio Phys. and Radio Astron., 14, 5. https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v1.i2.10
40. Mutch, S. J., Croton, D. J., Poole, G. B. (2011). The mid-life crisis of the Milky Way and M31. Astrophys. J., 736, Issue 2, article id. 84, 11 p. https://doi.org/10.1088/0004-637X/736/2/84
41. Naidu, R. P., Conroy, C., Bonaca, A., et al. (2021). Reconstructing the Last Major Merger of the Milky Way with the H3 survey. Astrophys. J., 923, Issue 1, article id. 92, 24 p. https://doi.org/10.3847/1538-4357/ac2d2d
42. PeZarrubia, J., Ma, Y.-Z., Walker, M. G., McConnachie,A. (2014). A dynamical model of the local cosmic expansion. Mpc. Mon. Notic. Roy. Astron. Soc., 443, Issue 3, 2204-2222. https://doi.org/10.1093/mnras/stu879
43. Pilyugin, L. S., Grebel, E. K., Kniazev, A. Y. (2014). The abundance properties of nearby late-type galaxies. I. The data. Astron. J., 147, Issue 6, article id. 131, 24 p. https://doi.org/10.1088/0004-6256/147/6/131
44. Pilyugin, L. S., Grebel, E. K., Zinchenko, I. A., et al. (2019). Relations between abundance characteristics and rotation velocity for star-forming MaNGA galaxies. Astron. and Astrophys., 623, id. A122, 28 p. https://doi.org/10.1051/0004-6361/201834239
45. Pilyugin, L. S., TautvaiÓien , G. (2024). Two sequences of spiral galaxies with different shapes of the metallicity gradients. Astron. and Astrophys., 682, id. A41, 20 p. https://doi.org/10.1051/0004-6361/202347032
46. Pilyugin, L. S., TautvaiÓien , G., Lara-L\pez, M. A. (2023). Searching for Milky Way twins: Radial abundance distribution as a strict criterion. Astron. and Astrophys., 676, id. A57, 28 p. https://doi.org/10.1051/0004-6361/202346503
47. Pilyugin, L. S., Thuan, T. X., VRlchez, J. M. (2007). On the maximum value of the cosmic abundance of oxygen and the oxygen yield. Mon. Notic. Roy. Astron. Soc., 376, Issue 1, 353-360. https://doi.org/10.1111/j.1365-2966.2007.11444.x
48. Pulatova, N. G., Vavilova, I. B., Sawangwit, U., et al. (2015). The 2MIG isolated AGNs - I. General and multiwavelength properties of AGNs and host galaxies in the northern sky. Mon. Notic. Roy. Astron. Soc., 447, Issue 3, 2209-2223. https://doi.org/10.1093/mnras/stu2556
49. Pulatova, N. G., Vavilova, I. B., Vasylenko, A. A., et al. (2023). Radio properties of the low-redshift isolated galaxies with active nuclei. Kinematika i fizika nebesnyh tel, 39, Issue 2, 47-72. https://doi.org/10.15407/kfnt2023.02.047
50. Reid, M. J., Menten, K. M., Brunthaler, A., et al. (2019). Trigonometric parallaxes of high-mass star-forming regions: Our view of the Milky Way. Astrophys. J., 885, Issue 2, article id. 131, 18 p. https://doi.org/10.3847/1538-4357/ab4a11
51. Queiroz, A. B. A., Chiappini, C., Perez-Villegas, A., et al. (2021). The Milky Way bar and bulge revealed by APOGEE and Gaia EDR3. Astron. and Astrophys., 656, id. A156, 27 p. https://doi.org/10.1051/0004-6361/202039030
52. Quillen, A. C. (1996). Morphology of cold bars in early and late type galaxies. https://doi.org/10.48550/arXiv.astroph/ 9609041
53. Rix, H.-W., Bovy, J. (2013). The Milky Way’s stellar disk. Mapping and modeling the Galactic disk. Astron. and Astrophys. Rev., 21, article id. 61. https://doi.org/10.1007/s00159-013-0061-8
54. Rix, H.-W., Chandra, V., Zasowski, G., et al. (2024). The extremely metal rich knot of stars at the heart of the Galaxy. https://doi.org/10.48550/arXiv.2406.01706
55. Sawala, T., Delhomelle, J., Deason, A. J., et al. (2024). Apocalypse when? No certainty of a Milky Way - Andromeda collision. https://doi.org/10.48550/arXiv.2408.00064
56. Semenov, V. A., Conroy, C., Chandra, V., et al. (2024). Formation of Galactic Disks. I. Why Did the Milky Way’s Disk Form Unusually Early? Astrophys. J., 962, Issue 1, id. 84, 18 p. https://doi.org/10.3847/1538-4357/ad150a
57. Shen, J., Zheng, X.-W. (2020). The bar and spiral arms in the Milky Way: structure and kinematics. Res. in Astron. and Astrophys., 20, Issue 10, id. 159, 18 p. https://doi.org/10.1088/1674-4527/20/10/159
58. Sorgho, A., Verdes-Montenegro, L., Hess, K. M., et al. (2024). The AMIGA sample of isolated galaxies — effects of environment on angular momentum. Mon. Notic. Roy. Astron. Soc., 528, Issue 2, 1630-1654. https://doi.org/10.1093/mnras/
stae006
59. Tsuboi, M., Kitamura, Y., Uehara, K., et al. (2018). ALMA view of the circumnuclear disk of the Galactic Center: tidally disrupted molecular clouds falling to the Galactic Center. Publ. Astron. Soc. Jap., 70, Issue 5, id. 85, 25 p. https://doi.org/10.1093/pasj/psy080
60. Tully, R. B., Fisher, J. R. (1987). Nearby galaxies Atlas. Cambridge: University Press.
61. Tuntipong, S., van de Sande, J., Croom, S. M., et al. (2024). The SAMI galaxy survey: on the importance of applying multiple selection criteria for finding Milky Way analogues. Mon. Notic. Roy. Astron. Soc., 533, Issue 4, 4334-4359. https://doi.org/10.1093/mnras/stae2042
62. van den Bergh, S. (2006). The Dwarf Satellites of M31 and the Galaxy. Astron. J., 132, Issue 4, 1571-1574. https://doi.org/10.1086/507332
63. van der Marel, R. P., Fardal, M. A., Sohn, S. T., et al. (2019). First Gaia dynamics of the Andromeda System: DR2 proper motions, orbits, and rotation of M31 and M33. Astrophys. J., 872, Issue 1, article id. 24, 14 p. https://doi.org/10.3847/1538-4357/ab001b
64. Vasylenko, A. A., Vavilova, I. B., Pulatova, N. G. (2020). Isolated AGNs NGC 5347, ESO 438-009, MCG-02-04-090, and J11366-6002: Swift and NuSTAR joined view1. Astron. Nachr., 341, Issue 8, 801-811. https://doi.org/10.1002/asna.202013783
65. Vavilova, I., Dobrycheva, D., Vasylenko, M., et al. (2020). Multiwavelength extragalactic surveys: Examples of data mining. Knowledge discovery in big data from astronomy and Earth observation, 1st Edition. Ed. by P. Skoda and A. Fathalrahman. Elsevier, 307-323. https://doi.org/10.1016/B978-0-12-819154-5.00028-X
66. Vavilova, I. B., Dobrycheva, D. V., Vasylenko, M. Y., et al. (2021). Machine learning technique for morphological classification of galaxies from the SDSS. I. Photometry-based approach. Astron. and Astrophys., 648, id. A122, 14 p. https://doi.org/10.1051/0004-6361/202038981
67. Vavilova, I. B., Khramtsov, V., Dobrycheva, D. V., et al. (2022), Machine learning technique for morphological classification of galaxies from SDSS. II. The image-based morphological catalogs of galaxies at 0.02 < z < 0.1. Space Science and Technology, 28, Issue 1, 3-22. https://doi.org/10.15407/knit2022.01.003
68. Vol’vach, A. E., Vol’vach, L. N., Kut’kin, A. M., et al. (2011). Multi-frequency studies of the non-stationary radiation of the blazar 3C 454.3. Astron. Rep., 55, Issue 7, 608-615. https://doi.org/10.1134/S1063772911070092
69. Watkins, L. L., van der Marel, R. P., Sohn, S. T., et al. (2019). Evidence for an Intermediate-mass Milky Way from Gaia DR2 Halo Globular Cluster Motions. Astrophys. J., 873, Issue 2, article id. 118, 13 p. https://doi.org/10.3847/1538-4357/ab089f
70. Wylie, S. M., Clarke, J. P., Gerhard, O. E. (2022). The Milky Way’s middle-aged inner ring. Astron. and Astrophys., 659, id. A80, 8 p. https://doi.org/10.1051/0004-6361/202142343