Orbit selection of the space industrial platform with distributed electrical-power system modules

1Alpatov, AP, 2Wang, Changqing, 3Lu, Hongshi, 4Lapkhanov, Erik
1Institute of Technical Mechanics of the National Academy of Science of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine; 2- School of Automation, Northwestern Polytechnical University, Xi'an, China;
2School of Automation, Northwestern Polytechnical University, Xi'an, China
3School of Automation, Northwestern Polytechnical University, Xi'an, China; 3- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, China
4Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
Space Sci. & Technol. 2024, 30 ;(4):03-23
https://doi.org/10.15407/knit2024.04.003
Publication Language: English
Abstract: 
Space industrialization is one of the prospective directions in modern aerospace science and engineering for space exploration of new resources and habitats. The key issue is to provide industrial space modules with the required amount of electricity needed. One type of power supply for such modules is the use of distributed power systems, which consist of constellations of spacecraft with contactless power transmission. Given this, the problem of rational orbit selection for their dislocation arises. Considering these problems, the methodology for orbits selection of the space industrial platform with distributed electrical-power system modules is proposed in the paper. This methodology includes orbital translation, attitude, relative dynamics estimation for each power satellite, and its corresponding orbit optimization algorithm.
       The orbit optimization algorithm includes statistical processing and elements of gradient and coordinate descent methods, allowing us to determine the most significant parameter influencing the duration of the contactless power transmission session. Also, quaternion mathematics is used to estimate the dynamics in the program parameters for targeting the transmitter spacecraft antenna to the receiver spacecraft rectenna. With the approaches mentioned above, the methodology proposed in this paper allows us to form the requirements for the power satellites’ attitude and orbit control system to improve the process of selecting corresponding design parameters of such systems.
        Thus, the usage of the proposed methodology can allow the designing of the power satellites' attitude and orbit control system in the conceptual stages of designing.
Keywords: contactless power transmitting; orbit selection; targeting quaternion; optimization of orbit parameters
References: 

1. Aditya B., Hongru C., Yasuhiro Y., Shuji N., Toshiya H. (2021). Verify the Wireless Power Transmission in Space using
Satellite to Satellite System. Int. J. Emerging Technologies, 12(2), 110-118.

2. Alpatov A. P., Khoroshylov S. V., Maslova A. I. (2019). Сontactless de-orbiting of space debris by the ion beam. Dynamics and
control. Кyiv: Akademperiodyka, 170 p.

3. Alpatov A., Kravets V., Kravets V., Lapkhanov E. (2021). Representation of the kinematics of the natural trihedral of a
spiral-helix trajectory by quaternion matrices. Trans. Machine Learning and Artificial Intelligence, 9(4), 18-29.
https://doi.org/10.14738/tmlai.94.10523

4. Bergsrud C., Bernaciak R., Kading B., McClure J., Straub J., Shahukhal S., Williams K. (2021). SunSat Design Competition
2013-2014 Third Place Winner - Team University of North Dakota: Nano SSP Satellite. Online J. Space Communication, 11(18).
URL: https://ohioopen.library.ohio.edu/cgi/viewcontent.cgi?article= 1444&context=spacejournal (Last accessed: 16.08.2023).

5. Bergsrud C., Straub J. (2014). A space-to-space microwave wireless power transmission experiential mission using small
satellites. Acta Astronautica, 103, 193-203.
https://doi.org/10.1016/j.actaastro.2014.06.033

6. Chang S., Li D., Qi Y. (2023). Pearson's goodness-of-fit tests for sparse distributions. J. Appl. Statistics, 50(5), 1078-1093.
https://doi.org/10.1080/02664763.2021.2017413

7. Chaudhary K., Kumar D. (2018). Satellite solar wireless power transfer for baseload ground supply: clean energy for the
future. Eur J. Futures Res., 6(9).
https://doi.org/10.1186/s40309-018-0139-7

8. Curtis H. (2019). Orbital Mechanics for Engineering Students (4th ed.). Butterworth-Heinemann, 692 p.

9. Fortescue P., Stark J., Swinerd G. (2011). Spacecraft systems engineering. John Wiley & Sons Ltd. Chichester, 724 p.
https://doi.org/10.1002/9781119971009

10. Golubek A. V., Filipenko I. M., Tatarevskii K. E. (2020). A Priory Estimation of Orbital Injection Accuracy for Modern Launch
Vehicles with a Strapdown Inertia Navigation System. Dnipro: LIRA, 187 p. [in Russian].

11. Gordeev V. N. (2016). Quaternions and biquaternions with applications in geometry and mechanics. Kyiv: Publishing house
"Steel", 316 p.

12. Gosavi S. S., Mane H. G., Pendhari A. S., Magdum A. P., Deshpande S., Baraskar A., Jadhav M., Husainy A. (2021). A
review on space based solar power. J. Thermal Energy Systems, 6(1), 16-24.
https://doi.org/10.46610/JoTES.2021.v06i01.003

13. ISO 16269-6:2014. Statistical interpretation of data. Part 6: Determination of statistical tolerance intervals.
URL: https://www.iso.org/obp/ui/en/#iso:std:iso:16269:-6:ed-2:v1:en (Last accessed: 16.08.2023).

14. Khoroshylov S. V. (2009). On algorithmic support of orientation control of solar space power plants. Part 1. System
technologies, 61(2), 153-167 [in Russian].

15. Landis G. A. (2006). Re-evaluating satellite solar power systems for Earth. IEEE 4th World Conf. on Photovoltaic Energy
Conversion (Waikoloa, HI, USA, 7-12 May).
https://doi.org/10.1109/WCPEC.2006.279877

16. Lockett A. J. (2020). Review of Optimization Methods. General-Purpose Optimization Through Information Maximization.
Natural Computing Series. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-62007-6_2

17. Makarov A. L., Khoroshilov S. V. (2012). Attitude control of solar battery and transmitting antenna for space solar power
satellite. Kosm. nauka tehnol., 18(3), 3-9.
https://doi.org/10.15407/knit2012.03.003

18. Mankins J. C. (2014). The Case for Space Solar Power. Virginia Edition Publishing, LLC, 580 p.

19. National Geospatial-Intelligence Agency (NGA) standardization document (2008). Department of Defense, World
Geodetic System 1984, 208 p.
URL: https://nsgreg.nga.mil/doc/view?i=4085 (Last accessed: 16.08.2023).

20. Palii O. S., Lapkhanov E. O., Svorobin D. S. (2022). Model of distributed space power system motion control. Technical
mechanics, 4, 35-50.
https://doi.org/10.15407/itm2022.04.035

21. Rabanser S., Neumann L., Haltmeier M. (2019). Analysis of the Block Coordinate Descent Method for Linear Ill-Posed
Problems. SIAM J. Imaging Sci., 12(4), 1808-1832.
https://doi.org/10.1137/19M1243956

22. Reshetnev M. F., Lebedev V. A., Bartenev V. A., Krasil'shchikov M. N., Malyshev V. A. (1988). Control and navigation of
artificial Earth satellites in near-circular orbits. Mashinostroenie Publishing House, 336 p. [in Russian]

23. Sasaki S. and JAXA Advanced Mission Research Group (2009). SSPS development road map. IAC-09.C3.1.4.
URL: http://www13.plala.or.jp/spacedream/PDFSPSENG12.pdf (Last accessed: 16.08.2023).

24. Wang E., Wu S., Liu Y., Wu Z., Liu X. (2019). Distributed vibration control of a large solar power satellite. Astrodynamics,
3(2), 189-203.
https://doi.org/10.1016/j.ast.2019.105378
https://doi.org/10.1007/s42064-018-0046-5

25. Yermoldina G. T., Suimenbayev B. T., Sysoev V. K., Suimenbayeva Zh. B. (2018). Features of Space Solar Power Station
Control System. Acta Astronautica, 158, 111-120.
https://doi.org/10.1016/j.actaastro.2018.04.001

26. Zbrutskii A. V., Ganzha A. P. (2011). Navigation of the Earth remote sensing satellite by land surface imagery. Kyiv: National
Technical University "Kyiv Polytechnic Institute" Publishing House, 160 p. [in Russian]