The application of a topographic correction method of multizonal space image data for the classification of forest cover in mountainous terrain
Heading:
1Lyalko, VI, 1Shportiuk, ZM, 1Sakhatsky, AI, 1Sibirtseva, ОN 1State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine», Kyiv, Ukraine |
Kosm. nauka tehnol. 2003, 9 ;(4):094-098 |
https://doi.org/10.15407/knit2003.04.094 |
Publication Language: Ukrainian |
Abstract: A new topographic correction method of multizonal space image data for the classification of forest cover in mountainous terrain is developed. The method was tested by the classification of forests of Western Sayani mountain areas, Siberia with the use of the Landsat-7 ETM image data. It is shown that the topographical correction essentially improves classification results.
|
Keywords: mountainous terrain, space image data, topographic correction method |
References:
1. Kondratyev K. Y., Pivovarova Z. I., Fedorova M. P. Radiation mode inclined surfaces, 216 p. (Gidrometeoizdat, Leningrad, 1978) [in Russian].
2. Sakhats’kyi O. I., Sibirtseva O. M., Shportyuk Z. M. Combining a digital relief model with Landsat 7 images for the determination of topographic terrain characteristics for purposes of radiometric correction. Kosm. nauka tehnol., 8 (2-3), 89—91 (2002) [in Ukrainian].
https://doi.org/10.15407/knit2002.02.089
https://doi.org/10.15407/knit2002.02.089
3. Carpenter G. A., Gopal S., Macomber S., et al. A Neural network method for mixture estimation for vegetation mapping. Remote Sens. Environ., 70 (2), 138—152 (1999).
https://doi.org/10.1016/S0034-4257(99)00027-9
https://doi.org/10.1016/S0034-4257(99)00027-9
4. Katila M., Tomppo E. Selecting estimation parameteps for the Finnish multisource National Forest Inventory. Remote Sens. Environ., 76 (1), 16—32 (2001).
https://doi.org/10.1016/S0034-4257(00)00188-7
https://doi.org/10.1016/S0034-4257(00)00188-7
5. Pons X., Sole-Sugranes L. A Simple radiometric correction model to improve automatic mapping of vegetation from multi-spectral satellite data. Remote Sens. Environ., 48 (2), 191—204 (1994).
https://doi.org/10.1016/0034-4257(94)90141-4
https://doi.org/10.1016/0034-4257(94)90141-4
6. Proy C., Tanre D., Deschamps P. Y. Evalution of topographic effects in remotely sensed data. Remote Sens. Environ., 30 (1), 21—32 (1989).
https://doi.org/10.1016/0034-4257(89)90044-8
https://doi.org/10.1016/0034-4257(89)90044-8
7. Ranson K. J., Sun G., Kharuk V. J., Kovacs K. Characterisation of forests in wester Sayani Mountains, Siberia from SIR-C SAR Date. Remote Sens. Environ., 75 (2), 188—200 (2001).
https://doi.org/10.1016/S0034-4257(00)00166-8
https://doi.org/10.1016/S0034-4257(00)00166-8
8. Yang C., Vidal A. Combination of digital elevation models with SPOT-1 HRV multispectral imagery for reflectance factor mapping. Remote Sens. Environ., 32 (1), 35— 45 (1990).
https://doi.org/10.1016/0034-4257(90)90096-5