The plume-flows structure of spacecraft thrusters

1Shuvalov, VA, 2Kochubei, GS, 2Lazuchenkov, DN
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2003, 9 ;(4):017-025
Publication Language: Russian
Approximate models of plume-flows of spacecraft thrusters are formulated. The models are adequate to numerical simulations and to results of physical experiments.
Keywords: numerical simulations, physical experiments, plume-flows thrusters
1. Avduevskii V. S., Ashratov E. A., Ivanov A. V., Pirumov U. G. Supersonic nonisobaric gas jets, 248 p. (Mashinostroenie, Moscow, 1985) [in Russian].
2. Avdyushin S. I., Podgorny I. M., Popov H. A., et al. Use of plasma accelerators for study of physical processes in space. In: Plasma Accelerators and Ion Injectors, 232—250 (Nauka, Moscow, 1984) [in Russian].
3. Averenkova G. I., Ashratov E. A., Volokonskaya T. G., et al. Supersonic Jets of an Ideal Gas, Pt. 1, 714 p. (Izd. Mosk. Univ., Moscow, 1970) [in Russian].
4. Aleksandrov V. A., Kozubsky K. N., Maslennikov N. A., et al. Development and testing of a pulsed plasma accelerator-a plasma source for conducting active experiments in near-Earth space. In: Istochniki i uskoriteli plazmy, Is. 4, 68—75 (HAI, Kharkov 1980) [in Russian].
5. Antokhin V. M., Balashov Yu. P., Gerasim Yu. I., et al. Research on the model of flow "Apollo" spacecraft. Mehanika zhidkosti i gaza, No. 5, 124—133 (1977) [in Russian].
6. Askhabov S. N., Burgasov M. P., Veselovzorov A. N., et al. Study on the jet of the stationary plasma accelerator with closed electron drift. Fizika Plazmy, 7 (1), 225—230 (1981) [in Russian].
7. Granovsky V. L. Electric Current in Gases, 432 p. (Gostehizdat, Moscow, Leningrad, 1952) [in Russian].
8. Grishin S. D., Leskov L. V. Electric Rocket Engines of Spacecraft, 216 p. (Mashinostroenie, Moscow, 1989) [in Russian].
9. Dulov V. G., Lukyanov G. A. Gas dynamics of exhaust processes, 234 p. (Nauka, Novosibirsk, 1984) [in Russian].
10. Lukianov G. A. Supersonic plasma jets, 264 p. (Mashinostroenie, Leningrad, 1985) [in Russian].
11. Meier E., Hermel J., and Rodgers A. V. Loss of thrust due to the interaction of the exhaust jet with constructional elements of an orbital ying vehicle. Aerokosm. Tekh., No. 8, 118—126 (1987) [in Russian].
20. Raizer Yu. P. Gas Discharge Physics, 592 p. (Nauka, Moscow, 1987) [in Russian].
13. Roberts L., South J. C. Comments on exhaust flow field and surface impingement. Raketnaja tehnika i kosmonavtika, 2 (2), 238—240 (1964) [in Russian].
14. Chutov Yu. I., Kravchenko A. Yu. Effect of additional cooling and heating of electrons on the expansion of plasmoids into a vacuum. Fiz. Plazmy, 9 (3), 655—658 (1983) [in Russian].
15. Shuvalov V. A., Levkovich O. A., Kochubei G. S. Approximate Models of Exhaustion of a Supersonic Gas Jet into Vacuum. Prikladnaja mehanika i tehnicheskaja fizika, 42 (2), 62—67 (2001) [in Russian].
16. Shuvalov V. A., Churilov A. E., Bystritskii M. G. Diagnostics of Flows of Pulsed Plasma by Probe, Microwave, and Photometric Methods. Teplofizika vysokih temperatur, 38 (6), 877—881 (2000) [in Russian].
17. Boyd I. D. Review of hall thruster plume modeling. J. Spacecraft and Rockets, 38 (3), 381—387 (2001).
18. Eckman R., Byrue L., Gatsonis N. A., et al. Triple Langmuir probe measurements in the plume of a pulsed plasma thruster. J. Propulsion and Power, 17 (4), 762—771 (2001).
19. Gatsonis N. C, Eckman R., Yin X., et al. Experimental investigations and numerical modeling of pulsed plasma thruster plumes. J. Spacecraft and Rockets, 38 (3), 454—463 (2001).
20. Taimar M., Gonzalez J., Hilgers A. Modeling of spacecraft — environment interations on SMART1. J. Spacecraft and Rockets, 38 (3), 393—399 (2001).

21. Van Gilder D. B., Boyd I. D., Keidar M. Particle simulations of a hall thruster plume. J. Spacecraft and Rockets, 37 (1), 129—136 (2000).