Charge distribution on dust particles of space plasma
Heading:
1Klymenko, Yu.O, 1Cheremnykh, ОК 1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine |
Kosm. nauka tehnol. 2003, 9 ;(4):067-072 |
https://doi.org/10.15407/knit2003.04.067 |
Publication Language: Russian |
Abstract: We present a new approach to the study of charge properties of dust particles in a dusty plasma. We adopt for the first time the detailed balance method developed earlier in the solid state physics. The present theory takes adequately into account the discreteness of the charge variations on a dust grain and operates in terms of probabilities to find one or other charge on a dust particle. The proposed equations, being solved analytically, give simple analytical expressions for the shape of the charge probabilities. We demonstrate that the charge distribution of a dust grain has a Gaussian form and the peak position is coincident with the charge derived in widely used Orbital Motion Limited (OML) theory. It is shown that the relative charge fluctuation on a dusty grain is increased with decreasing the dust size. The proposed method also enables us to obtain sone useful information concerning statistical and thermodynamic properties of dust grains in the space dusty plasma. We present simple analytic expressions for statistical and thermodynamic properties of dust grains in the space dusty plasma and discuss the results of our theoretical approach in terms of statistical theory and plasma physics.
|
Keywords: detailed balance method, dust particles, space plasma |
References:
1. Beenakker C. W. Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev., B44 (4), 1646—1656 (1991).
https://doi.org/10.1103/PhysRevB.44.1646
https://doi.org/10.1103/PhysRevB.44.1646
2. Bringol L. A., Hyde T. W. Charging in a dusty plasma. Adv. Space Res., 20 (8), 1539—1542 (1997).
https://doi.org/10.1016/S0273-1177(97)00434-1
https://doi.org/10.1016/S0273-1177(97)00434-1
3. Bringol-Barge L., Hyde T. W. The calculation of grain charge in a dense dusty plasma with a nonuniform surface potential. Adv. Space Res., 29 (9), 1277—1282 (2002).
https://doi.org/10.1016/S0273-1177(02)00066-2
https://doi.org/10.1016/S0273-1177(02)00066-2
4. Bringol-Barge L., Hyde T. W. Charging in a dusty plasma with a size distributions: a comparison of three models. Adv. Space Res., 29 (9), 1283—1288 (2002).
https://doi.org/10.1016/S0273-1177(02)00067-4
https://doi.org/10.1016/S0273-1177(02)00067-4
5. Klymenko Yu. O. Manifestation of Coulomb blockade effects at an arbitrary degeneracy of the levels of a molecular contact. Low Temperature Phys., 28 (6), 395—402 (2002).
https://doi.org/10.1063/1.1491179
https://doi.org/10.1063/1.1491179
6. Kotsarenko N. Ya., Koshevaya S. V., Kotsarenko A. N. Dusty plasma in space. Geofis. int., 37 (2), 71—86 (1998).
7. Shukla P. K. New collective processes in dusty plasmas: applications to space and laboratories. Plasma Phys. Control. Fusion, 42, 213—221 (2000).
https://doi.org/10.1088/0741-3335/42/12B/316
https://doi.org/10.1088/0741-3335/42/12B/316
8. Shukla P. K., Mamun A. A. Introduction to dusty plasma physics, 265 p. (IOP Publishing Ltd, London, 2002).
https://doi.org/10.1887/075030653X
https://doi.org/10.1887/075030653X
9. Thomas H., Morfill G. E., Demmel V., Goree J., et al. Plasma crystal: coulomb crystallization in a dusty plasma. Phys. Rev. Lett., 73, 652—655 (1994).
https://doi.org/10.1103/PhysRevLett.73.652
https://doi.org/10.1103/PhysRevLett.73.652
10. Tsytovich V. N. Dust plasma crystals, drops, and clouds. Physics-Uspekhi, 40 (1), 53—94 (1997).
https://doi.org/10.1070/PU1997v040n01ABEH000201
https://doi.org/10.1070/PU1997v040n01ABEH000201
11. Watanabe Y. Dust phenomena in processing plasmas. Plasma Phys. Control. Fusion, 39, 59—72 (1997).
https://doi.org/10.1088/0741-3335/39/5A/007