Severe magnetic, ionospheric and atmospheric storms in september 1998: the comparison of measurement and modeling results
Heading:
1Grigorenko, Ye.I, 2Dzyubanov, DA, 1Lysenko, VN, 1Taran, VI, 3Chernogor, LF 1Institute of Ionosphere of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Kharkiv, Ukraine 2National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine 3V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine |
Kosm. nauka tehnol. 2003, 9 ;(4):049-066 |
https://doi.org/10.15407/knit2003.04.049 |
Publication Language: Russian |
Abstract: The Kharkiv IS radar observations during the 25 September 1998 severe magnetic storm showed significant changes in the behavior of the midlatitude ionosphere related to the inner plasmasphere (geomagnetic latitude of the radar is equal to 45.7°, L = 1.9). Some features of a pronounced negative ionosphere storm are considered. Among them are a considerable electron density depletion, uplifting in the peak height zmF2, increase in plasma and neutral temperatures. They can be explained in terms of thermosphere disturbances, the Joule heating, the penetration of magnetospheric convection electric fields into midlatitudes, and other effects. A comparison of the measured and modeled ionosphere and atmosphere responses to the magnetic storm is presented.
|
Keywords: atmospheric storms, ionospheric storms, magnetic storms, modeling |
References:
1. Afraimovich E. L., Kosogorov E. A., Leonovich L. A., Pirog O. M. Global Pattern of Large-Scale Ionospheric Disturbances During the Magnetic Storm of September 25, 1998, as Inferred from GPS Network Data. Geomagnetizm i Aeronomiia, 42 (4), 491—498 (2002) [in Russian].
2. Brjunelli B. E., Namgaladze A. A. Ionospheric physics, 528 p. (Nauka, Moscow, 1987) [in Russian].
3. Banks P. M. The thermal structure of the ionosphere. Proceedings of the IEEE, 57 (3), 6—30 (1969) [in Russian].
4. Banks P. M. Energy Sources of the High Latitude Upper Atmosphere. In: Polar Upper Atmosphere, 121 — 133 (Mir, Moscow, 1983) [in Russian].
5. Grigorenko Ye. I., Emelyanov L. Ya., Taran V. I., Chernogor L. F. The results of observations of processes in the ionosphere accompanying the geomagnetic storm on September 25, 1998, with the help of the incoherent scattering radar in Kharkov. In: Propagation of radio waves: Materials of XX All-Russian Sci. Conf., 56—57 (Nizhny Novgorod, 2002) [in Russian].
6. Ivanov-Kholodny G. S., Mikhailov A.V. Prediction of the State of the Ionosphere. Deterministic Approach, 190 p. (Gidrometeoizdat, Leningrad, 1980) [in Russian].
7. Indyukov A. E., Klimov N. N., Vasilyev G. V., Fligel M. D. On the location of the main ionospheric trough from topside sonding data. In: Issled. Geomagn. Aeron. Fiz. Solntsa, Is. 71, 58—61 (1985) [in Russian].
8. Taran V. I. A study of the natural and artificially disturbed ionosphere by the incoherent scatter method. Geomagnetizm i Aeronomiia, 41 (5), 659—666 (2001) [in Russian].
9. Taran V. I., Grigorenko E. I. Ionospheric-protonospheric processes during natural disturbances according to the Kharkov incoherent scattering radar. In: 1st Ukrainian Conference for Perspective Space Researches: Proceedings, 119—124 (ADEF-Ukraina, Kiev, 2001) [in Russian].
10. Taran V. I., Grigorenko E. I., Lysenko V. N., Pulyaev V. A. Ionospheric effects of magnetic storms on observations on the incoherent scattering radar in Kharkov. In: Information technologies: science, technology, technology, education, health. Materials of KhSPU, Is. 7, pt. 3, 381—383 (1999) [in Russian].
11. Taran V. I., Lysenko V. N., Grigorenko E. I. Peculiarities of plasma transport processes and ionospheric-protospheric interactions during magnetic storms. Vestnik nac. tehnich. un-ta «Har'kovskij politehnicheskij institut»: Sb. nauch. tr., Is. 4, 261—264 (2001) [in Russian].
12. Physics of Space: Small Encyclopedia, Ed. by R. A. Syunyaev, 783 p. (Sov. Encyclopedia, Moscow, 1986) [in Russian].
13. Chernogor L. F. Energetics of the Processes Occurring on the Earth, in the Atmosphere and Near-Earth Space in Connection with the Project "Early Warning". Kosm. nauka tehnol., 5 (1), 38—47 (1999) [in Russian].
https://doi.org/10.15407/knit1999.01.038
https://doi.org/10.15407/knit1999.01.038
14. Chernogor L. F. Physics of Earth, Atmosphere, and Geospace from the Standpoint of System Paradigm. Radio Physics and Radio Astronomy, 8 (1), 59—68 (2003) [in Russian].
15. Bilitza D. International reference ionosphere-status 1995/1996. Adv. Space Res., 20 (9), 1751 — 1754 (1997).
16. Buonsanto M. J. Millstone Hill incoherent scatter F region observations during the disturbances of June 1991. J. Geophys. Res., 100 (A4), 5743—5755 (1995).
17. Buonsanto M. J. Ionospheric storms - A review. Space Sci. Rev., 88, 563—501 (1999).
18. Buonsanto M. J., Gonzalez S. A., Pi X., et al. Radar chain study of the May, 1995 storm. J. Atmos. Solar-Terr. Phys., 61, 233—248 (1999).
19. Buonsanto M. J., Pohlman L. M. Climatology of neutral exospheric temperature above Millstone Hill. J. Geophys. Res., 103 (A10), 23.381—23.392 (1998).
20. Chernogor L. F., Grigorenko Ye. I., Taran V. I., Tyrnov O. F. Dynamic processes in the near-Earth plasma during the September 25, 1998 magnetic storm from Kharkiv incoherent scatter radar data. In: Programme Poster Presentations International Union of Radio Science XXVIl' General Assembly, P. 2280 (Maastricht the Netherlands, 2002).
21. Foster J. C., Rich F. J. Prompt mid-latitude electric field effects during severe geomagnetic storms. J. Geophys. Res., 103, 26.367—26.372 (1998).
22. Gonzales W. D., Jozelyn J. A., Kamide Y., et al. What is a geomagnetic storm? J. Geophys. Res., 99 (A4), 5771—5792 (1994).
23. Hedin A. E. MSIS-86 thermospheric model. J. Geophys. Res., 92 (5), 4649—4662 (1987).
24. McFarland M., Albritton D. L., Fehsenfeld F. C., et al. Flow-drift technique for ion mobility and ion-molecule reaction rate constant measurements. II. Positive ion reactions of N+, 0+ and Nj with 02 and 0+ with N2 from thermal to 2 eV. J. Chem. Phys., 59 (12), 6620—6628 (1973).
25. Mikhailov A. V., Foster J. C. Daytime thermosphere above Millstone Hill during severe geomagnetic storms. J. Geophys. Res., 102, 17.275—17.282 (1997).
26. Mikhailov A. V., Furster M. Some F2-layer effects during the January 06-11, 1997 CEDAR storm period as observed with the Millstone Hill incoherent scatter facility. J. Atmos. Solar-Terr. Phys., 61, 249—261 (1999).
27. Pavlov A. V., Buonsanto M. J. Using steady-state vibrational temperatures to model effects of N2 on calculations of electron densities. J. Geophys. Res., 101, 26.941 — 26.945 (1996).
28. Pavlov A. V. The role of vibrationally excited oxygen and nitrogen in the ionosphere during the undisturbed and geomagnetic storm period of 6—12 April 1990. Ann. Geophys., 16, 589—601 (1998).
29. Pavlov A. V., Buonsanto M. J., Schlesier A. C., et al. Comparison of models and data at Millstone Hill during the 5-11 June 1991 storm. J. Atmos. Solar-Terr. Phys., 61, 263—279 (1999).
30. Prulss G. W. Storm-induced changes in the thermospheric composition at middle latitudes. Planet. Space Sci., 35, 807—811 (1987).
31. Prulss G. W., Craven J. D. Perturbations of the FUV dayglow and ionospheric storm effects. Adv. Space Res., 22 (1), 129—134 (1998).
32. Richards P. G., Fennelly J. A., Torr D. G. EUVAC: A solar EUV flux model for aeronomic calculations. J. Geophys. Res., 99, 8981—8992 (1994).
33. Richards P. G., Torr D. G. Ratios of photoelectron to EUV ionization rates for aeronomic studies. J. Geophys. Res., 93, 4060—4066 (1988).
34. Richards P. G., Torr D. G., Buonsanto M. J., et al. Ionospheric effects of the March 1990 magnetic storm: Comparison of theory and measurement. J. Geophys. Res., 99 (A12), 23.359—23.365 (1994).
35. Salah J. E., Evans J. V. Measurements of thermospheric temperature by incoherent scatter radar. Space Res., 13, 267—286 (1973).
36. Salah J. E., Evans J. V., Alcayde D., et al. Comparison of exospheric temperatures at Millstone Hill and St-Santin. Ann. Geophys., 32 (3), 257—266 (1976).
37. Schlesier A. C., Buonsanto M. J. The Millstone Hill ionospheric model and its application to the May 26-27, 1990 ionospheric storm. J. Geophys. Res., 104 (A10), 22.453— 22.468 (1999).
38. Shunk R. W., Nagy A. F. Electron temperature in the F region of the ionosphere: theory and observations. Rev. Geophys. and Space Phys., 16 (3), 355—399 (1978).
39. Taran V. I., Grigorenko Ye. I., Kiyashko G. A. The F region ionosphere response on the severe magnetic storm on September 25, 1998. In: Space Plasma physics: Kosm. nauka tehnol., 7 (Suppl. 2), 42—46 (2001).
https://doi.org/10.15407/knit2001.02s.042
https://doi.org/10.15407/knit2001.02s.042
40. Torr M. R., Torr D. G., Richards P. G., et al. Mid- and low-latitude model of thermospheric emissions: 1. O+ (²P) 7320 Å and N2 (2P) 3371 Å. J. Geophys. Res., 95, 21.147—21.168 (1990).
41. Tsurutani B. T., Gonzales W. D., Kamide Y., et al. Magnetic Storms. Geophysical Monograph 98, 348 p. (American Geophysical Union, Washington, D.G., 1997).