Analysis and classification of ionosphere storms at the midlatitudes of Europe. 2

1Grigorenko, Ye.I, 1Lysenko, VN, 1Taran, VI, 2Chernogor, LF
1Institute of Ionosphere of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Kharkiv, Ukraine
2V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
Kosm. nauka tehnol. 2007, 13 ;(5):077-096
https://doi.org/10.15407/knit2007.05.077
Publication Language: Russian
Abstract: 
The results of our comparison analysis for ionosphere-thermo-sphere effects of three geospace storms which differ in the intensity and passing character are presented. The observations of ionosphere disturbances were carried out with the use of the Kharkiv incoherent scatter radar. A classification of the ionosphere disturbances with the separation of three groups according to their peculiarities is suggested. The physical development schemes for each of the groups of the disturbances that can be applied for the midlatitude ionosphere over Europe are described.
Keywords: comparison analysis, geospace storms, ionosphere-thermo-sphere effects
References: 
1. Brjunelli B. E., Namgaladze A. A. Ionospheric physics, 528 p. (Nauka, Moscow, 1988) [in Russian].
2. Grigorenko Ye. I., Emel'yanov L. Ya., Pazura S. A., et al. Disturbances in the ionospheric plasma during the severe magnetic storm on 29-31 May 2003: The results of observations with the Kharkov incoherent scatter radar. Uspehi sovremennoj radiojelektroniki, No. 4, 21—39 (2005) [in Russian].
3. Grigorenko E. I., Lysenko V. N., Pazjura S. A., et al. Anomalous Ionospheric Storm of March 21, 2003. Kosm. nauka tehnol., 10 (1), 4—11 (2004) [in Russian].
4. Grigorenko E. I., Lysenko V. N., Taran V. I., Chernogor L. F. Specific features of the ionospheric storm of March 20-23, 2003. Geomagnetizm i Aeronomiia, 45 (6), 789—802 (2005) [in Russian].
5. Grigorenko Ye. I., Lysenko V. N., Taran V. I., Chernogor L. F. Analysis and classification of ionosphere storms at the midlatitudes of Europe. 1. Kosm. nauka tehnol., 13 (5), 58—76 (2007) [in Russian].
https://doi.org/10.15407/knit2007.05.058
6. Grigorenko Ye. I., Paziura S. A., Puliaiev V. A., et al. Dynamic processes in the ionosphere during the geospace storm on 30 May and solar eclipse on 31 May 2003. Kosm. nauka tehnol., 10 (1), 12—25 (2004) [in Russian].
7. Grigorenko Ye. I., Pazura S. A., Taran V. I., Chernogor L. F. Anomalous ionospheric storm on 20—23 March 2003: Some results  of measurements and simulation. Kosm. nauka tehnol., 11 (3-4), 4—19 (2005) [in Russian].
8. Grigorenko Ye. I., Pazura S. A., Taran V. I., Chernogor L. F. The severe geomagnetic storm on 30—31 May 2003: Results  of measurements and simulation. Kosm. nauka tehnol., 11 (3-4), 20—37 (2005) [in Russian].
9. Grigorenko E. I., Pazura S. A., Taran V. I., et al. Dynamic processes in the ionosphere during the severe magnetic storm of May 30-31, 2003. Geomagnetizm i Aeronomiia, 45 (6), 803—823 (2005) [in Russian].
10. Grigorenko E. I., Taran V. I., Chernogor L. F., Chernjaev S. V. Anomalous Ionospheric Storm of March 21,2003: Observations at the Kharkiv Incoherent Scatter Radar. Uspehi sovremennoj radiojelektroniki, No. 4, 3—20 (2005) [in Russian].
11. Danilov A. D., Morozova L. D. Ionospheric storms in the F2 region - Morphology and physics (Review). Geomagnetizm i Aeronomiia, 25 (5), 705—721 (1985) [in Russian].
12. Danilov A. D., Morozova L. D., Mirmovich E. G. Possible nature of the positive phase of ionospheric storms. Geomagnetizm i Aeronomiia, 25 (5), 768—772 (1985) [in Russian].
13. Krinberg I. A., Tashchilin A. V. Ionosphere and Plasmasphere. (Nauka, Moscow, 1984) [in Russian].
14. Taran V. I. A study of the natural and artificially disturbed ionosphere by the incoherent scatter method. Geomagnetizm i Aeronomiia, 41 (5), 659—666 (2001) [in Russian].
15. Chernogor L. F. Physics of Earth, Atmosphere, and Geospace from the Standpoint of System Paradigm. Radio Physics and Radio Astronomy, 8 (1), 59—106 (2003) [in Russian].
16. Chernogor L. F. The Earth-atmosphere-geospace environment system as an opened dynamic nonlinear one. Kosm. nauka tehnol., 9 (5-6), 96—105 (2003) [in Russian].
https://doi.org/10.15407/knit2003.05.096
17. Chernogor L. F. The Earth-Atmosphere-Ionosphere-Magnetosphere as an Open Dynamic Nonlinear Physical System. Pt. 1. Nelineinyi Mir, 4 (12), 655—697 (2006) [in Russian].
18. Chernogor L. F. The Earth-Atmosphere-Ionosphere-Magnetosphere as an Open Dynamic Nonlinear Physical System. Pt. 2. Nelineinyi Mir, 5 (4), 198—231 (2007) [in Russian].
19. Bailey G. J., Moffett R. J., Murphy J. A. Calculated daily variations of O and H at mid-latitudes. II. Sunspot maximum results. J. Atmos. Terr. Phys., 41, 471—482 (1979).
https://doi.org/10.1016/0021-9169(79)90038-2
20. Banks P. M. Charged particle temperatures and electron thermal conductivity in the upper atmosphere. Ann. Geophys., 22, 577—584 (1966).
21. Buonsanto M. J. Millstone Hill incoherent scatter F region observations during the disturbances of June 1991. J. Geophys. Res., 100 (A4), 5743—5755 (1995).
https://doi.org/10.1029/94JA03316
22. Buonsanto M. J. A case study of the ionospheric storm dusk effects. J. Geophys. Res., 100 (A12), 23857—23869 (1995).
https://doi.org/10.1029/95JA02697
23. Buonsanto M. J. Ionospheric storms — a review. Space Sci. Rev., 88, 563—601 (1999).
https://doi.org/10.1023/A:1005107532631
24. Foster J. C., Cummer S., Inan U. S. Midlatitude particle and electric field effects at the onset of the November 1993 Geomagnetic Storm. J. Geophys. Res., 103, 26359—26366 (1998).
https://doi.org/10.1029/98JA00018
25. Foster J. C., Rich F. J. Prompt midlatitude electric field effects during severe geomagnetic storms. J. Geophys. Res., 103, 26367—26372 (1998).
https://doi.org/10.1029/97JA03057
26. Goncharenko L., Salah J. E., Van Eyken A., et al. Observations of the April 2002 geomagnetic storm by the global network of incoherent scatter radars. Ann. Geophys., 23 (1), 163—181 (2005).
https://doi.org/10.5194/angeo-23-163-2005
27. Naghmoosh A. A., Murphy J. A. A comparative study of H and He at sunspot minimum and sunspot maximum. J. Atmos. Terr. Physics, 45 (10), 673—682 (1983).
https://doi.org/10.1016/S0021-9169(83)80026-9
28. Pavlov A. V. The role of vibrationally excited Oxygen and Nitrogen in the ionosphere during the undisturbed and geomagnetic storm period of 6—12 April 1990. Ann. Geophys., 16, 589—601 (1998).
https://doi.org/10.1007/s00585-998-0589-5
29. Pavlov A. V., Buonsanto M. J. Using steady-state vibrational temperatures to model effects of N2 on calculations of electron densities. J. Geophys. Res., 101, 26941—26945 (1996).
https://doi.org/10.1029/96JA02734
30. Prolss G. W. On explaining the local time variation of ionospheric storm effects. Ann. Geophys., 11, 1—9 (1993).
31. Prolss G. W. Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes. J. Geophys. Res., 98 (A4), 5981—5991 (1993).
https://doi.org/10.1029/92JA02777
32. Reddy C. A., Nishida A. Magnetospheric substorms and nighttime height changes of the F2 region at middle and low latitudes. J. Geophys. Res., 97 (A3), 3039—3061 (1992).
https://doi.org/10.1029/91JA01512
33. Richards P. G., Torr D. G., Buonsanto M. J., Sipler D. P. Ionospheric effects of the March 1990 magnetic storm: comparison of theory and measurement. J. Geophys. Res., 99 (A12), 23359—23365 (1994).
https://doi.org/10.1029/94JA02343

34. Shunk R. W., Nagy A. F. Electron temperature in the F region of the ionosphere: theory and observations. Rev. Geoph. Space Physics, 16 (3), 355—399 (1978).
https://doi.org/10.1029/RG016i003p00355