MICROCOSM as a perspective model for biological experiment at nanosatellite

1Brykov, V, 2Kovalenko, E, 3Ivanytska, B
1M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2National Technical University "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
3M.M. Gryshko National Botanical Garden, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Space Sci.&Technol. 2018, 24 ;(2):55-59
https://doi.org/10.15407/knit2018.02.055
Section: Space Life Sciences
Publication Language: Ukrainian
Abstract: 
The main proposal presented in the paper is to conduct a space experiment with use of a nanosatellite as a platform for the long-term biological experiment. The essence of the experiment is to study the influence of space flight factors on the ecological inter-species interaction between plants in the microcosm. This project won the third place in the Youth Competition of Advanced Space Projects organized by the Space Research Council of the National Academy of Sciences of Ukraine in 2017.
Keywords: microcosm, microgravity, nanosatellite, plants
References: 
 1. Rassamakin B. M., Ilchenko M. E, Baiskov H. F., et al. Mission of POLYTN-2-SAU nanosatelhte on international project QB50. 17th Ukrainian conference on space research: Abstracts, 225 (Odesa, 2017) [in Russian].
2. Brykov V. O. Bioenergetics of plant cells in microgravity. Kosm. nauka tehnol., 21 (4), 84—93 (2015). [in Ukrainian].
https://doi.org/10.15407/knit2015.04.084
3. Cherevchenko T. M., Mayko T. K., Bogatir V. B., et al. Perspectives in the use of tropical orchids for space investigation. Space Biol. Biotechnol. 41—45 (1986).
4. Heyenga A. G. The utilization of passive water and nutrient support systems in space flight plant cultivation and research. 6-th Eur. Symp. Space Environ. Contr. Syst., 867—871 (1997).
5. Kordyum E. L. Plant cell gravisensitivity and adaptation to microgravity. Plant biol., 16 (1), 79—90 (2014).
6. Levinskikh M. A., Sychev V. N., Derendiaeva T. A., et al. The influence of space flight factors on the growth and development of super dwarf wheat cultivated in greenhouse Svet. Aerospace and Environmental Medicine, 33 (2), 37— 41 (1999).
7. Link B. M., Durst S. J., Zhou W., Stankovic B. Seed-toseed growth of Arabidopsis thaliana on the International Space Station. Adv. Space Res., 31 (10), 2237—2243 (2003).
8. Merkys A. J., Laurinavicius R. S., Svegzdiene D. V. Plant growth, development and embryogenesis during Salyut-7 flight. Adv. Space Res., 4 (10), 55—63 (1984).
9. Musgrave M. E., Kuang A., Xiao Y., et al. Gravity independence of seed-to-seed cycling in Brassica rapa. Planta, 210, 400—406 (2000).
https://doi.org/10.1007/PL00008148
10. Nelson M., Pechurkin N.S., Allen J. P., et al.Closed Ecological Systems, Space Life Support and Biospherics. Environmental Biotechnology. Handbook of Environmental Engineering. Wang L., Ivanov V., Tay J. H. (eds). Humana Press, Totowa, NJ., vol. 10 (2010).
11. Sychev V. N., Levinskikh M. A., Gostimsky S. A., et al. Spaceflight effects on consecutive generations of peas grown onboard the Russian segment of the International Space Statio. Acta Astronaut., 60 (4—7), 426—432 (2007).
12. Wolff S.A., Coelho L.H., Zabrodina M., et al. Plant mineral nutrition, gas exchange and photosynthesis in space: A review. Adv. Space Res., 51(3), 465—475 (2013).
https://doi.org/10.1016/j.asr.2012.09.024