Project of a small experimental electrodynamic space tether system

1Pirozhenko, AV, 1Maslova, AI, 2Mischenko, AV, 2Khramov, DA, 2Voloshenjuk, OL
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Space Sci.&Technol. 2018, 24 ;(2):03-11
https://doi.org/10.15407/knit2018.02.003
Section: Space Energy, Power and Propulsion
Publication Language: Russian
Abstract: 
We present the main ideas of the full-scale space experiment project with a small electrodynamic space tethered system (EDSTS) in the low Earth orbits. We substantiate actuality of this experiment to develop an effective removal system on EDSTS basis for spacecraft that had run out its term. The main results of research, which we discuss, are aimed to solve the fundamental problems of the system’s functioning in the space. The proposed experiment is needed to justify the choice of EDSTS parameters for the removing of spacecraft, which should be taken into account at the stage of spacecraft’s design.
Keywords: electrodynamics space tethered system, experiment, spacecraft removal system
References: 
 1. Alpatov A. P., Beletsky V. V., Dranovskii V. I., Zakrzhevskii A. E., Pirozhenko A.V., Troger H. et al. (2007).Dynamics of Space Systems Joined by Tethers and Hinges. Moskva-Izhevsk: NITs “Regular and Chaos Dynamics” [in Russian].
2. Appel P. (1960). Engineering mechanics. P. Appel. (Vols. 1-2). Moskva: Fizmathiz [in Russian].
3. Aslanov V. S., Pirozhenko A. V., Volosheniuk O. L., Kislov A. V., Yashchuk A. V. (2010). Definition of a survival time of space tethered system. Izvestiya of the Samara Russian Academy of Sciences scientific center, Vol. 12, 4, 138—143 [in Russian].
4. Beletsky V. V., Levin E. M. (1993). Dynamics of space tether systems. San Diego: American Astronautical Society.
5. Volosheniuk O. L., Khramov D. A. (2008). Estimation of the space tethered systems survival probability at collision with particles of the space debris.
Technical mechanics, 1, 3—12 [in Russian].
6. Maslova A. I. (2016) Oscillations of the small space tethered system under the action of aerodynamic moment. Technical mechanics, 3, 57—67 [in Russian].
7. Maslova A. I., Pirozhenko A. V. (2016).Orbit changes under the small constant deceleration. Space science and technology, 22 (6), 20—25 [in Russian].
https://doi.org/10.15407/knit2016.06.020
8. Mishchenko A. V., Pirozhenko A. V. (2011).The analysis of interaction model of electrodynamic tether systems with the earth’s magnetosphere and an ionosphere]. Space science and technology, 17 (4), 5—13 [in Russian].
https://doi.org/10.15407/knit2011.04.005
 9. Pirozhenko A. V., Khramov D. A. (2007). Scheme of deployment of the small space tethered system.  Visnyk of Dnipropetrovsk University: Rocket and space technology, 9/2, 198-204 [in Russian].
10. Khramov D. A. (2014). Schemes and models of deployment of a small space tethered systems. Technical mechanics, 4, 198— 204 [in Russian].
11. Alpatov A. P., Beletsky V. V., Dranovskii V. I., Khoroshilov V. S., Pirozhenko A. V., Troger H., et al. (2010). Dynamics of Tethered Space System. Taylor & Francis Group.
12. HTV-KITE Experiment. URL: http://spaceflight101. com/htv-6/htv-kite-experiment/.
13. Johnson L., Fujii H. A., Sanmartin J. R. (2010). Electrodynamic propulsion system tether experiment (T-REX). NASA Technical Reports Server (NTRS), 20100024214. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa. gov/20100024214.pdf.
14. Liou J. C., Johnson N. L. (2009). A sensitivity study of the effectiveness of active debris removal in LEO. Acta Astronautica, 64 (2), 236—243. 15. Lorenzini E. C., Cosmo M. L. (1997). Tethers in Space Handbook. Smithsonian Astrophysical Observatory.
16. Miniature Tether Electrodynamics Experiment (MiTEE). URL: http://digitalcommons.usu.edu/cgi/viewcontent.c gi?article=3293&context=smallsat.
17. Pearson J., Carroll J., Levin E., Oldson J. (2009). EDDE: ElectroDynamic Debris Eliminator for Active Debris Removal, NASA-DARPA: International Conference on Orbital Debris Removal, Chantilly, VA (December 8—10, 2009). URL: http://www.star-tech-inc.com/papers/ EDDE_for_Debris_Conference.pdf
18. Sanmartin J. R., Martinez-Sanchez M., Ahedo E. (1993). Bare wire anodes for electrodynamic tethers. J. Propulsion and Power, 9 (3), 353—360.
19. Sanmartin J. R., Lorenzini E. C. (2006). Spherical Collectors Versus Bare Tethers for Drag, Thrust, and Power Generation. IEEE Transactions on Plasma Science, 34 (5), 2133—2139.
https://doi.org/10.1109/TPS.2006.883367
20. Tether Electrodynamic Propulsion CubeSat Experiment (TEPCE). URL: https://en.wikipedia.org/wiki/Space_ tether_missions#CubeSat_technology