The importance of cell cycle parameters for the development of space plant growing

1Artemenko, OA
1Institute of Botany of the National Academy of Science of Ukraine, Kyiv, Ukraine
Space Sci.&Technol. 2017, 23 ;(5):66-71
https://doi.org/10.15407/knit2017.05.066
Section: Space Life Sciences
Publication Language: Russian
Abstract: 
The future long-term expeditions require a huge amount of metabolic resources — water, food, oxygen. These resources require special conditions and payload, which is too heavy for existing spacecrafts. In addition, such life support systems can not be implemented without a high level of cycling. Therefore, the plants could be considered as a necessary source of food and oxygen in the bioregenerative life systems of long-term space missions. The main tasks of space plant cultivation are the study of the principles of the functioning of such systems of different complexity and the development of scientific basis for their creation.
            In present work we pointed out the importance of plant growth parameters, generation and cell cycle events under clinorotation, specifically: mitotic activity, expression of the cell cycle genes-regulating (cyclins and cyclins depending kinases), transcription factors for initiation of decrease/increase of gene’s transcription program. All these parameters must be taken into account when we choose the digestible plants and the data about soil composition and biomass increment as well as when we study a cell growth and differentiation for collecting spoiled seeds under microgravity.
Keywords: cell cycle, cyclins, microgravity, plants, transcription factor
References: 
1. Artemenko O. Expression of 1- and 3-cyclins in Pea root meristema under clinorotation. Cytology and Genetics, 40 (2), 36—41 (2006) [in Ukrainian].
2. Artemenko O. Features of plant cell cycle regulations under altered gravity. Space science and technology, 21 (N 5), 108 — 113 (2015) [in Ukrainian].
https://doi.org/10.15407/knit2015.05.108
3. Artemenko O., Troyan V., Azarskova M. Clinorotation influence on the conformation and kinetic state of chromatine in the first cell cycle. Ukr. Bot. J., 62 (1), 122—130 (2005) [in Ukrainian].
4. Medvedev S. Plant physiology, 512 p. (BHV-Petersburg, SPb, 2012) [in Russian].
5. Cockcroft C. E., den Boer D. G., Healy J. M., Murray J. A. Cyclin D control of growth rate in plants. Nature, 405, 575—579 (2000).
https://doi.org/10.1038/35014621
6. Healy J. M., Menges M., Doonan J. H., Murray J. A. The Arabidopsis D-type cyclins CycD2 and CycD3 both interact in vivo with the PSTAIRE cyclin-dependent kinase Cdc2a but are differentially controlled. J. Biol. Chem., 276, 7041—7047 (2001).
https://doi.org/10.1074/jbc.M009074200
7. Herranz R., Medina F. J. Cell proliferation and plant development under novel altered gravity environments. Plant Biol. (Stuttg), 16 (1), 23—30 (2014).
https://doi.org/10.1111/plb.12103
8. John P. C., Mews M., Moore R. Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division. Protoplasma, 216 (3-4), 119—142 (2001).
https://doi.org/10.1007/BF02673865
9. Kitazono A., Fitz Gerald J., Kron S. Cell cycle: regulation by cyclins, (2005).
https://doi.org/10.1038/npg.els.0004024
10. Kordyum E. L. Biology of plant сell microgravity and under clinostating. Int. Rev. Cytol., 171, 1—72 (1997).
https://doi.org/10.1016/S0074-7696(08)62585-1
11. Kordyum E. L. Plant cell gravisensitivity and adaptation to microgravity. J. Plant Biol., 16 (1), 79—90 (2014).
https://doi.org/10.1111/plb.12047
12. Kvarnheden A., Yao J., Zhan X., O’Brien I., Morris B. Isolation of three distinct CycD3 genes expressed during fruit development in tomato. J. Exp. Boil., 51 (352), 1789—1797 (2000).
https://doi.org/10.1093/jexbot/51.352.1789
13. Lim S., Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development, 140, 3079—3093 (2013).
https://doi.org/10.1242/dev.091744
14. Martines M. C., Jorgenseti J. E., Lawton M. A., Lamb C., Doerner P. W. Spatial pattern of cdc2 expression in relation to meristem activity and cell proliferation during plant development. Proc. Natl, Acad. Sci. USA., N 89, 7360—7364 (1992).
15. Medina F., Herranz R. Microgravity environment uncouples cell growth and cell proliferation in root meristematic cells. The mediator role of auxin. Plant Signal Behav., 5 (2), 176—179 (2010).
https://doi.org/10.4161/psb.5.2.10966
16. Meijer M., Murray J. The role and regulation of D-type cyclins in the plant cell cycle. Plant Mol. Biol., 43, 621—633 (2000).
https://doi.org/10.1023/A:1006482115915
17. Novak B., Sible J., Tyson J. Checkpoints in the cell cycle. Curr Biol., R759—R768 (2008). 
https://doi.org/10.1016/j.cub.2008.07.001
18. Scofield S., Jones A., Murray J. A. H. The plant cell cycle in context. J. Exp. Bot., 65 (10), 2557—2562 (2014).
https://doi.org/10.1093/jxb/eru188
19. Tank J. G., Pandya R. V., Thaker V. S. Phytohormones in regulation of the cell division and endoreduplication process in the plant cell cycle. RSC Advs., 4 (24), 12605—12613 (2014).
https://doi.org/10.1039/c3ra45367g
20. Umeda M., Shimotohno A., Yamaguchi M. Control of cell division and transcription by cyclin-dependent Kinaseactivating Kinases in plants. Plant Cell Physiol., 46 (9), 1437—1442 (2005).
https://doi.org/10.1093/pcp/pci170