Method for automatic scheduling for LEO object's observations at fixed telescope

1Kozyrev, ES, 2Kozhukhov, ОМ, 1Sybiryakova, Ye.S
1Scientific-Research Institute «Mykolaiv Astronomical Observatory», Mykolaiv, Ukraine
2National Space Facilities Control and Test Center, State Space Agency of Ukraine, 8, Kniaziv Ostrozkykh Str., Kyiv, 01010 Ukraine
Space Sci.&Technol. 2017, 23 ;(4):71-77
https://doi.org/10.15407/knit2017.04.071
Publication Language: Russian
Abstract: 
We propose a heuristic method for automatic scheduling for Low Earth Orbit (LEO) object’s observations with the automatic telescope. The method is based on the solution of the dynamic problem of scheduling theory by the criterion of the maximum weighted sum of the revolutions being observed (tracks). The priority of observation of the object to which the given track belongs is used as the track’s weight. We describe an effectiveness of this method applying it to the LEO objects observations at the Research Institute "Mykolaiv Astronomical Observatory".
Keywords: LEO objects, observations scheduling, positional optical observations
References: 
1. Kozyryev Ye. S., Shulga O. V., Sybiryakova Ye. S.  TV observations of low Earth orbit objects using frame accumulation with shift. Kosm. nauka tehnol., 17 (3), 71—76 (2011) [in Russian].
https://doi.org/10.15407/knit2011.03.071
2. Conway R. W., Maxwell W. L., Miller L. W. Teoriia raspisanii [The scheduling theory], 359 p. (Nauka, М., 1975) [in Russian].
3. Molotov I. Ye., Voropaev V. A., Borovin G. K. Raboty IPM im. M.V. Keldysha RAN v oblasti monitoring opasnykh kosmicheskikh ob’ektov i sobytii. Vozmozhnosti povysheniia effektivnosti raboty segmenta ASPOS OKP po vysokim ob’ektam [Works of KIAM RAS in the field of monitoring of dangerous space objects and events. The opportunities to increase the ASPOS OKP’s high orbits segment efficiency].
Retrieved from http://astronomer.ru/data/0231/IPM_Works.pptx. [in Russian].
4. Chetverushkin B. N. Sistema RAN dlia sbora, obrabotki I analiza informatsii o tekhnogennoi obstanovke v okolozemnom kosmicheskom prostranstve [The RAS system for collecting, processing and analyzing information on the technogenic situation in near-Earth space]. Retrieved from http://astronomer.ru/data/0120/HTC.ppt  [in Russian].
5. Shulga O. V., Kozyryev Ye. S., Sybiryakova Ye. S., et al.  The mobile telescope complex of RI MAO for observation of near-earth space objects]. Kosm. nauka tehnol., 18 (4), 52—58 (2012) [in Russian].
https://doi.org/10.15407/knit2012.04.052
6. Shulga O. V., Kravchuk S. G., Sybiryakova Ye. S., et al. Development of Ukrainian network of optical stations UMOS as component of control systems for near-Earth space. Kosm. nauka tekhnol., 21 (3), 74—82 (2015) [in Ukrainian].
https://doi.org/10.15407/knit2015.03.074
7. Agapov V., Molotov I., Stepanyants V., Lapshin A. Tools used in KIAM space debris data center for processing and analysis of information on space debris objects obtained by the ISON network. Retrieved from http://astronomer.ru/data/0179/AGAPOV_Software_tools.pptx.
8. Denny R. B. Dispatch Scheduling of Automated Telescopes. The Society for Astronomical Sciences 23rd Annual Symposium on Telescope Science. Publ. Soc. Astron. Sci., 35—50, (2004).
9. Duncan A. R. Observation scheduling for a network of small-aperture telescopes. Publs Astron. Soc. Australia, 24 (2), 53—60 (2007).
https://doi.org/10.1071/AS07011
10. Frueh C. Sensor tasking for multi-sensor space object surveillance. Proc. 7th European Conference on Space Debris, Darmstadt, Germany, 18—21 April 2017, publ. by the ESA Space Debris Office, Eds T. Flohrer, F. Schmitz, SDC7-paper533. Retrieved from http://spacedebris2017.sdo.esoc.esa.int.
11. Hinze A., Fiedler H., Schildknecht T. Optimal Scheduling for Geosynchronous Space Object Follow-up Observations Using a Genetic Algorithm. Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS), September 2016. — Retrieved from  https://amostech.com/TechnicalPapers/2016/Poster/Hinze.pdf.
12. Kara I. V., Kozyryev Y. S., Sybiryakova Y. S., Shulga O. V. NAO catalog of geocentric state vectors of geosynchronous space objects. Bull. Crimean Astrophys. Observatory, 107, 98—102 (2011).
https://doi.org/10.3103/S0190271711010086
13. Kubánek P., Jelínek M., Nekola M., et al. RTS2 — Remote Telescope System, 2nd version. GAMMA-RAY BURSTS: 30 YEARS OF DISCOVERY: Gamma-Ray Burst Symposium. AIP Conf. Proc., 727, 753–756 . (2004).
https://doi.org/10.1063/1.1810951
14. Kubánek P., Jelínek M., Vítek S., et al. RTS2: a powerful robotic observatory manager, Proc. SPIE. Advanced Software and Control for Astronom., 6274, id 62741V (2006).
15. Musci R., Schildknecht T., Ploner M., Beutler G. Orbit Improvement for GTO Objects Using Follow-up Obervations. Adv. Space Res., 35(7), 1236—1242 (2005).
https://doi.org/10.1016/j.asr.2005.02.074
16. Steele I. A., Carter D. Control software and scheduling of the liverpool robotic telescope, Proc. SPIE. Telescope Control Systems II., 3112, 222—233 (1997).