Physical foundation for the construction of paraffin-based hybrid rocket engines. Кinetics of melting and combustion
Heading:
1Aktan, OYu., 2Zabashta, Yu.F, 2Chernyak, VYa., 3Orlovskaya, SG, 2Svechnikova, OS, 3Karimova, FF, 3Shkoropado, MS 1Taras Shevchenko National University of Kyiv, Kyiv,Ukraine 2Taras Shevchenko National University of Kyiv, Kyiv, Ukraine 3I.I. Mechnikov National University of Odessa, Odessa, Ukraine |
Kosm. nauka tehnol. 2011, 17 ;(3):28-33 |
https://doi.org/10.15407/knit2011.03.028 |
Publication Language: Russian |
Abstract: The kinetics of melting and combustion for paraffin systems is investigated. For these systems, some characteristics of the propagation of the front of melting and combustion are experimentally determined. A mechanism of the dispersion of paraffin fuels is proposed on the basis of the obtained information. The foundation of the mechanism is the notion of loss in stability of the paraffin molten layer.
|
Keywords: loss in stability, melting kinetics, paraffin systems |
References:
1. Bulavin L. A., Aktan O. Yu., Nikolaenko T. Yu., et al. Computerization of the method of torsional oscillations. Pribory i tekhnika eksperimenta, No. 3, 164—165 (2007) [in Russian].
2. Bulavin L. A., Aktan O. Yu., Zabashta Yu. F., et al. Application of the method of torsional oscillations to study the transitions between the liquid and solid aggregate states of matter. Pis'ma v ZhTF, 36 (6), 66—72 (2010) [in Russian].
3. Zel'dovich Ya. B., Barenblatt G. I., Librovich V. B., and Makhviladze G. M. The Mathematical Theory of Combustion and Explosion, 478 p. (Nauka, Moscow, 1980) [in Russian].
4. Kalinchak V. V., Struchaev A. I., Orlovskaya S. G., and Chabanov M. I. Inertial characteristics of the flame of hydrocarbon drops during its hysteresis. Physics of combustion and explosion, 26 (1), 92—96 (1990) [in Russian].
5. Knorre G. F., Aref’ev K. M., Blokh A. G., et al. A Theory of Furnace Processes, 491 p. (Energiya, Moscow, 1966) [in Russian].
6. Landau L. D., Lifshits E. M. Gidrodynamics, 736 p. (Nauka, Moscow, 1988) [in Russian].
7. Nazarov G. A., Prishchepa V. I. Spacecraft Solid Fuel Engines, 63 p. (Znanie, Moscow, 1980) [in Russian].
8. Orlovskaya S. G., Kalinchak V. V., Shkoropado M. S., et al. Determination of the characteristics of the combustion of droplets of dokosan. In: Dispersnye sistemy: Tezisy dokladov XXIV nauchnoj konferencii stran SNG, 222— 223 (2010) [in Russian].
9. Kalashnikov M. O., Koroliov V. H., Krasnikov O. I., Balitskyi I. P., Kublik V. F., Mamontov V. H. Solid fuel jet propulsion engine. Pat. 78427 Ukraine, MPK F02K 1/78, No. a200507692; published 15.03.2007, Bull. No. 3 [in Ukrainian].
10. Bulavin L. A., Aktan O. Yu., Zabashta Yu. F., Nikolaenko T. Yu. Method for determining the rheological characteristics of consistent liquid. Pat. 78094 Ukraine, MPK G01N 11/16, G01N 11/10, No. a200502350; published 15.02.2007, Bull. No. 2 [in Ukrainian].
11. Pasynsky A. G. Colloid Chemistry, 265 p. (Vysshaya shkola, Moscow, 1959) [in Russian].
12. Prishchepa V. I. Cosmonautics: An Encyclopedia, 528 p. (Sovetskaya encyclopedia, Moscow, 1985) [in Russian].
13. Timoshenko S. P. Course of the elasticity theory, 501 p. (Naukova Dumka, Kiev, 1972) [in Russian].
14. Dornheim M. A. Ideal hybrid fuel is wax. Aviation week and space technology, No. 3, 52—54 (2003).
15. Greatrix D. Regression rate estimation for standard-flow hybrid rockets engines. Aerospace Sci. and Technology, 13 (7), 358—363 (2009).
https://doi.org/10.1016/j.ast.2009.07.003
https://doi.org/10.1016/j.ast.2009.07.003
16. Nakagawa I., Hikone S., Suzuki T. A study on the regression rate of paraffin-based hybrid rocket fuels. Abstracts of 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., P. 4935 (Denver, Colorado, 2009).
https://doi.org/10.2514/6.2009-4935
https://doi.org/10.2514/6.2009-4935
17. Van Pelt D., Hopkins J., Skinner M., et al. Overview of a 4-inch OD paraffin-based hybrid sounding rocket program. Abstracts of 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., P. 358 (Fort Lauderdale, FL, 2004).
https://doi.org/10.2514/6.2004-3822