Investigation of variances for red edge indices of wheat reflectance spectra over a gas field
Heading:
1Lyalko, VI, 1Shportiuk, ZM, 1Sibirtseva, ОN, 2Dugin, SS, 2Vorobiov, VI 1State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine», Kyiv, Ukraine 2State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Science of the National Academy of Sciences of Ukraine», Kyiv, Ukraine |
Kosm. nauka tehnol. 2010, 16 ;(6):05-10 |
https://doi.org/10.15407/knit2010.06.005 |
Publication Language: Ukrainian |
Abstract: Field spectrometric data were recorded from wheat plots with the FieldSpec® 3FR spectrometer over the Hlibovske gas field (the Crimea) on 27 May 2010. We detected the influence of gas seepage on wheat reflectance spectra using the variances of the red edge position REP and MERIS terrestrial chlorophyll index TCI. We found some decrease in REP and TCI values over the gas field relative to their mean values outside the gas field.
|
Keywords: chlorophyll index, red edge, REP and TCI values |
References:
1. Lyalko V. I., Popov M. O. (Eds) Multispectral remote sensing in nature management, 358 p. (Nauk.dumka, Kyiv, 2006) [in Ukrainian].
2. Lyalko V. I., Shportyuk Z. M., Sakhatskyi O. I., Sybirtseva O. M. The use of red edge indices and water indices from hyperspectral data from EO-1 Hyperion for land cover classification. Kosm. nauka tehnol., 14 (3), 55—68 (2008) [in Ukrainian].
https://doi.org/10.15407/knit2008.03.055
https://doi.org/10.15407/knit2008.03.055
3. Lyalko V. I., Shportyuk Z. M., Sakhatskyi O. I., Sybirtseva O. M. Land cover classification in Ukrainian Carpathians using the MERIS Terrestrial Chlorophyl Index and red edge position from ENVISAT MERIS data. Kosm. nauka tehnol., 12 (5-6), 10—14 (2006) [in Ukrainian].
4. Lyalko V. I., Shportjuk Z. M., Sakhatsky A. I., et al. Comparison of satellite and ground-based hyperspectral data for the red edge position estimation. Kosm. nauka tehnol., 16 (3), 39—45 (2010) [in Ukrainian].
https://doi.org/10.15407/knit2010.03.039
https://doi.org/10.15407/knit2010.03.039
5. Chang S.-H., Collins W. Confirmation of the Airborne Biogeophysical Mineral Exploration Technique Using Laboratory Methods. Econ. Geol., 78 (4), 723—736 (1983).
https://doi.org/10.2113/gsecongeo.78.4.723
https://doi.org/10.2113/gsecongeo.78.4.723
6. Collins W., Chang S.-H., Raines G., et al. Airborne biogeophysical mapping of hidden mineral deposits. Econ. Geol., 4 (78), 737—749 (1983).
https://doi.org/10.2113/gsecongeo.78.4.737
https://doi.org/10.2113/gsecongeo.78.4.737
7. Dash J., Curran P. J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens., 25, 5403—5413 (2004).
https://doi.org/10.1080/0143116042000274015
https://doi.org/10.1080/0143116042000274015
8. Goetz A., Rock B., Rowan L. Remote Sensing for Exploration: An Overview. Econ. Geol., 78 (4), 573—590 (1983).
https://doi.org/10.2113/gsecongeo.78.4.573
https://doi.org/10.2113/gsecongeo.78.4.573
9. Horler D. N. H., Dockray M., Barber J. The red edge of plant leaf reflectance. Int. J. Remote Sens., 4, 273—288 (1983).
https://doi.org/10.1080/01431168308948546
https://doi.org/10.1080/01431168308948546
10. Li L., Ustin S. L., Lay M. Application of AVIRIS data in detection of oil-induced vegetation stress and cover change at Jornada, New Mexico. Remote Sens. Environ., 94, 1—16 (2004).
https://doi.org/10.1016/j.rse.2004.08.010
https://doi.org/10.1016/j.rse.2004.08.010
11. McCoy R. M., Scott L. F., Hardin P. The spectral responce of sagebrush in areas of hydrocarbon production. Proc. of Seventh Thematic Conference on Remote Sensing for Exploration Geology, 751—756 (Environmental Research Institute, Ann Arbor, Michigan, 1989).
12. Milton N. M., Collins W., Chang S.-H., et al. Remote detection of metal anomalies on Pilot Mountain, Randolf County, North Carolina. Econ. Geol., 78 (4), 605—615 (1983).
https://doi.org/10.2113/gsecongeo.78.4.605
https://doi.org/10.2113/gsecongeo.78.4.605
13. Noomen M. F. Hyperspectral reflectance of vegetation affected by underground hydrocarbon gas seepage: Ph. D. Dissertation. — International Institute for Geo-International Science and Earth Observation, Enschede, the Netherlands (ITC), No. 145, 167 p. (2007).
14. Noomen M. F., Skidmore A. K., van der Meer F. D. Detecting the influence of gas seepage on vegetation using hyperspectral remote sensing. 3-th EARSel Workshop on Imaging Spectroscopy, Herrsching, Germany, 13—16 May, 2003, Eds M. Habermeyer, A. Mülle, S. Holzwarth, 252—256 (Herrsching, 2003).
15. Noomen M. F., Skidmore A. K., van der Meer F. D., et al. The influence of gas pipeline leakade on plant development and reflectance. ACRS 2004: Proc. of the 25th Asian Conf. on Remote Sensing, Vol. 1-2, 637—642 (Chiang Mai, Thailand, 2004).
16. Noomen M. F., van der Meer F. D., Skidmore A. K. Hyperspectral remote sensing for detecting the effects of three hydrocarbon gases on maize reflectance. Global monitoring for sustainability and security: Proc. of the 31-st Internat. Symp. on Remote Sensing of Environment, Saint-Petersburg, 20—24 June, 2005, 4 p. (Saint-Petersburg, 2005).
17. Schumacher D. Hydrocarbon-induced alteration of soils and sediments. In: Schumacher D., Abrams M. A. (Eds) Hidrocarbon migration and its nearsurface expression. AAPG Memoir., No. 66, 71—89 (1996).
18. Shportyuk Z. M., Sakhatsky A. I., Sibirtseva O. N. Land cover classification in Ukrainian Carpathians using the MERIS terrestrial Chlorophyl index and red edge position from Envisat MERIS data. In: Remote Sensing: From Pixels to Processes: Proc. of Midterm Symposium ISPRS, Enschede, the Netherlands, 8—11 May 2006.
19. Van der Werff H. M. A., Noomen M. F., van der Meijde M., et al. Use of hyperspectral remote sensing to detect hazardous gas leakage from pipelines. In: New Developments and Challenges in Remote Sensing, Ed. by Z. Bochenek, 707—714 (Millpress, Rotterdam, 2007).