The severe geomagnetic storm on 30–31 May 2003: results of measurements and simulation

1Grigorenko, Ye.I, 1Pazura, SA, 1Taran, VI, 2Chernogor, LF
1Institute of Ionosphere of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Kharkiv, Ukraine
2V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
Kosm. nauka tehnol. 2005, 11 ;(3-4):020-037
https://doi.org/10.15407/knit2005.03.020
Publication Language: Russian
Abstract: 
We present some resulls of observations and simulation of tha F region and topside ionosphere response to the 30–31 May 2003 severe geomagnetic storm (maximum index Кр = 8). Effects of well-pronounced negative ionosphere disturbance are revealed which are rarely observed in the midlatitude ionosphere concerning to the inner plasmasphcrc (L ≈ 2 for Kharkov). They point to the convection of the midlatitude Irough, light Ion trough and hot /one together with the plasmapause up to the. latitude of Kharkov. Our simulation and study of the effects of thermospheric disturbances as well as the thermal regime of neutral and charged components of the upper Earth's atmosphere showed their significant changes during the storm. The observations are carried out with the Kharkov incoherent scatter radar.
References: 
1. Afraimovich E. L., Kosogorov E. A., Leonovich L. A., Pirog O. M. Global Pattern of Large-Scale Ionospheric Disturbances During the Magnetic Storm of September 25, 1998, as Inferred from GPS Network Data. Geomagnetizm i Aeronomiia, 42 (4), 491—498 (2002) [in Russian].
2. Bogovskiy V. K., Grigorenko E. I., Emelyanov L. Ya., et al. Features of ionospheric parameters variations during the geocosmic storm of May 30, 2003. In: 3rd Ukrainian Conference for Perspective Space Researches: Abstracts, 142 (Katsiveli, Crimea, 2003) [in Russian].
3. Bogovskii V. K., Grigorenko E. I., Taran V. I. Solar Cyclic Variations in Hydrogen Ion Density in the Topside Ionosphere. Kosm. nauka tehnol. 8 (Suppl. 2), 164—172 (2002) [in Russian].
4. Brjunelli B. E., Namgaladze A. A. Ionospheric physics, 528 p. (Nauka, Moscow, 1988) [in Russian].
5. Banks P. M. The thermal structure of the ionosphere. Proceedings of the IEEE, 57 (3), 6—30 (1969) [in Russian].
https://doi.org/10.1109/PROC.1969.6959
6. Grigorenko Ye. I., Lysenko V. N., Taran V. I., Chernogor L. F. Results of radiophysical studies of the processes in the ionosphere accompanying the very strong magnetic storm on 25 September 1998. Uspehi sovremennoj radiojelektroniki, No. 9, 57—94 (2003) [in Russian].
7. Grigorenko Ye. I., Paziura S. A., Puliaiev V. A., et al. Dynamic processes in the ionosphere during the geospace storm on 30 May and solar eclipse on 31 May 2003. Kosm. nauka tehnol., 10 (1), 12—25 (2004) [in Russian].
8. Danilov A. D., Morozova L. D. Ionospheric storms in the F2 region - Morphology and physics (Review). Geomagnetizm i Aeronomiia, 25 (5), 705—721 (1985) [in Russian].
9. Kiyashko G. A., Grigorenko E. I. Specific Altitude-Time Distribution of Hydrogen Ions above Kharkov. Vestn. KhGPU, No. 103, 45–47 (2000) [in Russian].
10. Krinberg I. A., Tashchilin A. V. Ionosphere and Plasmasphere, 190 p. (Nauka, Moscow, 1984) [in Russian].
11. Saenko Iu. S., Klimenko V. V., Namgaladze A. A. Investigation of the filling and emptying of plasma tubes with allowance for ion inertia. Geomagnetizm i Aeronomiia, 22 (6), 948—952 (1982) [in Russian].
12. Serebriakov B. E. Investigation of processes in the thermosphere during magnetic disturbances. Geomagnetizm i Aeronomiia, 22 (5), 776—781 (1982) [in Russian].
13. Taran V. I. A study of the natural and artificially disturbed ionosphere by the incoherent scatter method. Geomagnetizm i Aeronomiia, 41 (5), 659—666 (2001) [in Russian].
14. Taran V. I., Grigorenko E. I. Ionospheric-protonospheric processes during natural disturbances but from the Kharkov incoherent scattering radar. In: 1st Ukrainian Conference for Perspective Space Researches: Proceedings, 119—124 (ADEF-Ukraina, Kiev, 2001) [in Russian].
15. Taran V. I., Grigorenko Ye. I., Kiyashko G. A. Features of the behavior of hydrogen ions in the outer ionosphere over Kharkov during a period of high solar activity. Vestnik nac. tehn. un-ta «Har'kovskij politehnicheskij institut»: Sb. nauch. tr., Is. 4, 258—260 (2001) [in Russian].
16. Evans J. W. The Temperature of Neutral and Charged Particles in the Magnetosphere. In: Solar-terrestrial physics, 292—352 (Mir, Moscow, 1968) [in Russian].
17. Bailey G. J., Moffett R. J., Murphy J. A. Calculated daily variations of O+ and H+ at mid-latitudes-II. Sunspot maximum results. J. Atmos. Terr. Phys., 41, 471—482 (1979).
https://doi.org/10.1016/0021-9169(79)90038-2
18. Banks P. M. Charged parlicle temperatures and electron thermal conductivity in the upper atmosphere. Ann. Geophys., 22, 577—584 (1966).
19. Buonsanto M. J. Millstone Hill Incoherent Scatter F Region Observations During the Disturbances of June 1991. J. Geophys. Res., 100 (A4), 5743—5755 (1995).
https://doi.org/10.1029/94JA03316
20. Buonsanto M. J. A case study of the ionospheric storm dusk effects. J. Geophys. Res., 100 (A12), 23.857—23.869 (1995).
21. Buonsanto M. J. Ionospheric Storms — a Review. Space Sci. Rev., 88, 563—601 (1999).
https://doi.org/10.1023/A:1005107532631
22. Buonsanto M. J., Gonzalez S. A., Pi X., el al. Radar Chain Study of the May, 1995 Storm. J. Atmos. Solar Terr. Phys., 61, 233—248 (1999).
https://doi.org/10.1016/S1364-6826(98)00134-5
23. Buonsanto M. J., Pohlman L. M. Climatology of neutral exospheric temperature above Millstone Hill. J. Geophys. Res., 103 (A10), 23.381—23.392 (1998).
24. Chernogor L. F., Grigorenko Ye. I., Taran V. I., Tyrnov O. F. Dynamic processes in the near-Earth plasma during the September 25, 1998 magnetic storm from Kharkiv incoherent scatter radar data. In: XXVII General Assembly of the International Union of Radio Science, Programme, Poster Presentations Maastricht Exhibition and Congress Centre (MECC), Maastricht the Netherlands, 17—24 August 2002, 2280 (2002).
25. Dalgarno A., Degges T. C. Electron cooling in the upper atmosphere. Planet. Space Sci., 16, 125—132 (1968).
https://doi.org/10.1016/0032-0633(68)90049-4
26. Foster J. C., Rich F. J. Prompt midlatitude electric field effects during severe geomagnetic storms. J. Geophys. Res., 103, 26.367—26.372 (1998).
27. Foster J. C., Cummer S., Inan U. S. Midlatitude particle and electric field effects at the onset of the November 1993 Geomagnetic Storm. J. Geophys. Res., 103, 26.359—26.366 (1998).
28. Gonzales C. A., Kelley M. C., Behnke R. A., et al. On the latitudinal variations of the ionospheric electric field during magnetospheric disturbances. J. Geophys. Res., 88 (A11), 9135—9144 (1983).
https://doi.org/10.1029/JA088iA11p09135
29. Gonzales W. D., Jozelyn J. A., Kamide Y., Kroehl H. W. What is a geomagnetic storm? J. Geophys. Res., 99 (A4), 5771—5792 (1994).
https://doi.org/10.1029/93JA02867
30. Hedin A. E. MSIS-86 thermospheric model. J. Geophys. Res., 92 (A5), 4649—4662 (1987).
https://doi.org/10.1029/JA092iA05p04649
31. Mahajan K. K., Pandey V. K. Model of electron temperature in the topside ionosphere for low and medium solar activity conditions. J. Geophys. Res., 85, 213—216 (1980).
https://doi.org/10.1029/JA085iA01p00213
32. Mikhailov A. V., Foster J. C. Daytime thermosphere above Millstone Hill during severe geomagnetic storms. J. Geophys. Res., 102, 17.275-17.282 (1997).
33. Mikhailov A. V., Förster M. Some F2-layer Effects During the January 06-11, 1997 CEDAR Storm Period as Observed with the Millstone Hill Incoherent Scatter Facility. J. Atmos. Solar-Terr. Phys., 61, 249—261 (1999).
https://doi.org/10.1016/S1364-6826(98)00129-1
34. Mishin E., Foster J. C., Potekhin A P., et al. Ionospheric perturbations caused by quasi-periodic magnetic disturbances during the September 25, 1998 storm. In: EOS Trans. AGU, 81 N 48, Fall Meeting, F 947 (San Francisco, USA, 2000).
35. Mishin E., Foster J. C., Rich F. J., Taran V. Prompt ionospheric response to short period solar wind variations during the magnetic cloud event Sep 25, 1998. In: EOS Trans. AGU, 82 No. 20. Spring Meeting. S 291 (San Francisco, USA, May 15, 2001).
36. Pavlov A. V. The role of vibrationally excited oxygen and nitrogen in the ionosphere during the undisturbed and geomagnetic storm period of 6 — 12 April 1990. Ann. Geophys., 16, 589—601 (1998).
https://doi.org/10.1007/s00585-998-0589-5
37. Pavlov A. V., Buonsanlo M. J., Schlesier A. C., Richards P. G. Comparison of models and data at Millstone Hill during the 5—11 June 1991 Storm. J. Atmos. Solar-Terr. Phys., 61, 263—279 (1999).
https://doi.org/10.1016/S1364-6826(98)00135-7
38. Richards P. G., Torr D. D. Seasonal, diurnal, and solar cyclical variations of the limiting H+ flux in the Earth's topside ionosphere. J. Geophys. Res., 90 (A6), 5261—5268 (1985).
https://doi.org/10.1029/JA090iA06p05261
39. Richards P. G., Torr D. G., Buonsanto M. J., Sipler D. P. Ionospheric effects of the March 1990 magnetic storm: Comparison of theory and measurement. J. Geophys. Res., 99 (A12), 23.359—23.365 (1994).
40. Salah J. E., Evans J. V. Measurements of thermospheric temperature by incoherent scatter radar. Space Res., 13, 267—286 (1973).
41. Salah J. E., Evans J. V., Alcayde D., Bauer P. Comparison of exospheric temperatures at Millstone Hill and St-Santin. Ann. Geophys., 32 (3), 257—266 (1976).

42. Shunk R. W., Nagy A. F. Electron temperature in the F region of the ionosphere: theory and observations. Rev. Geophys. Space Phys., 16 (3), 355—399 (1978).
https://doi.org/10.1029/RG016i003p00355