Simulation of radiative electrization of spacecraft leeward surfaces in the ionosphere

1Shuvalov, VA, 2Kochubey, GS, 2Priymak, AI, 3Gubin, VV, 2Reznichenko, NP
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
3Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2001, 7 ;(5-6):030-043
https://doi.org/10.15407/knit2001.05.030
Publication Language: Russian
Abstract: 
Methodology is elaborated for the physical modelling of the radiative electrization of leeward surfaces of spacecraft construction elements by auroral electrons in a supersonic flow of ionospheric plasma past the spacecraft at low and middle heights. Based on the results of stand and numerical experiments and measurements on location, we determined the charging levels and the equilibrium potentials as functions of the concentration ratios of high-energy electrons and positive ions in the track immediately behind the body and in the undisturbed plasma.
Keywords: ionosphere, radiative electrization, undisturbed plasma
References: 
1.  Akishin A. I., Novikov L. S. The emission processes when exposed to the space environment factors on materials. Space Technology and Materials, 85—89 (Nauka, Moscow, 1982) [in Russian].
2.  Alpert Ia. L. Waves and artificial bodies in the near-earth plasma, 214 p. (Nauka, Moscow, 1974) [in Russian].
3.  Alpert Ja. L., Gurevich A. V., Pitaevskij L. P. Artificial satellites in rarefied plasma, 384 p. (Nauka, Moscow, 1964) [in Russian].
4.  Antonov V. M., Ponomarenko A. G. Laboratory Studies of Effects of Spacecraft Electrification, 115 p. (Nauka, Novosibirsk, 1992) [in Russian].
5.  Bronstein I. M., Fraiman B. S. Secondary Electron Emission, 408 p. (Nauka, Moscow, 1969) [in Russian].
6.  Grodzovskii G. L., Nikitin V. Ye., Skvortsov V. V. The problem of interaction of apparatus with the ionosphere. In: Fizika i primenenie plazmennyh uskoritelej, 290—308 (Nauka i tehnika, Minsk, 1974) [in Russian].
7. Gurevich A. V., Pitaevskii L. P., Smirnova V. V. Ionospheric aerodynamics, Uspehi fiz. nauk, 99 (1), 3—49 (1969) [in Russian].
8.  Gurevich A. V., Smirnova V. V. Flow over a plane body by a supersonic rarefied plasma flow. Geomagnetizm i Aeronomiia, 10 (3), 402—407 (1970) [in Russian].
9. Gurevich A. V., Schwarzburg A. B. Nonlinear Theory of Radio Wave Propagation in the Ionosphere, 272 p. (Nauka, Moscow, 1973) [in Russian].
10. Kaminsky M. Atomic and Ionic Collisions at the Metal Surface, 507 p. (Mir, Moscow, 1967) [in Russian].
11. Landau L. D., Lifshits E. M. Electrodynamics of Continuous Media, 532 p. (Fizmatgiz, Moscow, 1959) [in Russian].
12. McDaniel E. W. Collision Phenomena in Ionized Gases, 832 p. (Mir, Moscow, 1967) [in Russian].
13.  Nosachev L. V., Skvortsov V. V. A Study of Ion Current Distribution in a Wake Produced by Cylindrical and Spherical Bodies in a Stream of Argon and Nitrogen Plasma. Uchenye Zapiski TsAGI, 1 (5), 39—43 (1970) [in Russian].
14.  Nosachev L. V., Skvortsov V. V. Investigation of Slow Ions in a Rarefied Plasma Stream Using a Multi-Electrode Probe. Uchenye Zapiski TsAGI, 4 (3), 32—36 (1973) [in Russian].
15.  Oran W. A., Samir U., Stone N. H. Slow ions in plasma wind tunnels. Raketnaja tehnika i kosmonavtika, 14 (8), 180—181 (1976) [in Russian].
16.  Skvortsov V. V., Nosachev L. V. Some Results on Disturbances Introduced by Extraneous Bodies into a Stream of Rarefied Plasma. Kosmicheskie Issledovaniia, 6 (6), 855—859 (1968) [in Russian].
17.  Smirnova V. V. A Discrete Model of Rarified Plasma Plane Flowing over Bodies. Geomagnetizm i Aeronomiia, 11 (2), 230—237 (1971) [in Russian].
18.  Hester S. D., Sonin A. A. A laboratory study of the wakes of ionospheric satellites. Raketnaja tehnika i kosmonavtika, 8 (6), 125—135 (1970) [in Russian].
19. Hill J. R., Whipple E. C. Charging of large structures in space with application to the solar sail spacecraft. Ajerokosmicheskaja tehnika,  No. 3, 122—131 (1986) [in Russian].
20. Sharfman I., Talbot U. Using Ion Probes under Conditions of a Supersonic Stream of Plasma. Raketnaya tekhnika i kosmonavtika, 8 (6), 97—104 (1970) [in Russian].
21.  Shuvalov V. A. Flow of a nonequilibrium rarefied plasma past a sphere. Geomagnetizm i Aeronomiia, 19 (6), 994—1000 (1979) [In Russian].
22.  Shuvalov V. A. Structure of the near wake behind a cylinder in a nonequilibrium rarefied plasma flow. Geomagnetizm i Aeronomiia, 20 (3), 425—429 (1980) [In Russian].
23.  Shuvalov V. A. Modeling the interaction of bodies with the ionosphere, 180 p. (Nauk. dumka, Kiev, 1995) [in Russian].
24. Shuvalov V. A., Gubin V. V. Determination of the degree of nonisothermality of rarefied plasma flows by probe methods. Teplofizika Vysokikh Temperatur, 16 (4), 688—692 (1978) [in Russian].
25. Shuvalov V. A., Zeldina E. A. About influence of ion density distribution on the structure of electrostatic field on the trace after satellite. Geomagnetizm i Aeronomiia, 15 (4), 627—632 (1975) [in Russian].
26.  Shuvalov V. A., Zeldina E. A. Structure of the electrostatic field in the wake of a sphere in the flow of a low-density equilibrium plasma. Geomagnetizm i Aeronomiia, 16 (4), 603—607 (1976) [in Russian].
27.  Shuvalov V. A., Priymak A. I., Gubin V. V. Simulation of radiative electrization of spacecraft in the ionosphere and magnetosphere. Kosm. nauka tehnol., 4 (5-6), 28—35 (1998) [in Russian].
28.  Shuvalov V. A., Priimak A. I., Gubin V. V., and Tokmak N.A. Neutralization of High-Voltage Charges on the Dielectric Surface by Plasma Flows and Electromagnetic Radiation Fluxes. Proc. Conf. on Plasma Physics and Technologies [Fizika plazmy i plazmennye   tehnologii (FPPT-2): Mater. II mezhdunar. konf.], Minsk, Sept. 15—19, 1997, Vol. 3, 432—435 (Inst. Mol. At. Fiz. Akad. Nauk Belarusi, Minsk, 1997) [in Russian].
29.  Anderson P. C., Koons H. C. Spacecraft charging anomaly a low-altitude satellite in an Aurora. J. Spacecraft and Rockets, 33 (5), 734—738 (1996).
https://doi.org/10.2514/3.26828
30.  Davies R. E., Dennison J. R. Evolution of secondary electron emission characteristics of spacecraft surface. J. Spacecraft and Rockets, 34 (4), 571—574 (1998).
https://doi.org/10.2514/2.3252
31.  Enloe C. L., Cooke D. J., Meassick S. et. al. Ion collection in a spacecraft wake: laboratory simulations. J. Geophys. Res., 98 (A8), 13635—13644 (1993).
https://doi.org/10.1029/93JA01191
32.  Fournier G., Pigache D. Wakes in collisionless plasma. Phys. Fluids, 18 (11), 1443—1453 (1975).
https://doi.org/10.1063/1.861043
33.  Gussenhoven M. S., Hardy D. A., Rich F. et al. High-level spacecraft charging in the low-altitude polar auroral environment. J. Geophys. Res., 90 (A11), 11009— 11023 (1985).
https://doi.org/10.1029/JA090iA11p11009
34.  Isensee U., Lehz W., Maasberg H. A numerical  model  to calculate the wake structure of a spacecraft under ionospheric conditions. Advance Space Res., 1 (2), 409— 412 (1981).
https://doi.org/10.1016/0273-1177(81)90314-8
35.  Knudsen W. C., Harris K. K. lon-impact-produced secondary electron emission and its effect on space instrumentation mechanism. J. Geophys. Res., 78 (7), 1145—1153 (1973).
https://doi.org/10.1029/JA078i007p01145
36.  Labramboise J. Theory of spherical and cylindrical Langmuir probe in a collisionless plasma at rest. In: Rarefied Gas Dynamics, Vol. 2, 22—412 (Acad. Press, N. Y., 1965).
37.  Laframboise J. G., Luo J. High-voltage polar orbit and beam-induced charging of a dielectric spacecraft: a wake-induced barrier effect mechanism. J. Geophys. Res., 94 (A7), 9033—9048 (1989).
https://doi.org/10.1029/JA094iA07p09033
38.  Langmuir J., Blodgett K. Currents limited by space charge between coaxial cylinders. Phys. Rev., 22 (4), 317—321 (1923).
https://doi.org/10.1103/PhysRev.22.347
39.  Liu V. C. Ionospheric gas dynamics of satellite and diagnostic probes. Space Sci. Rev., 9, 423—490 (1969).
https://doi.org/10.1007/BF00212707
40.  Martin A. R. A review of spacecraft / plasma interactions and effects of space systems. J. British interplanetary society, 47, 134—142 (1994).
41.  Morgan M. A., Chan C., Allen R. C. A laboratory study of the electron temperature in the near wake of a conducting body. Geophys. Res. Letters, 14 (11), 1170—1173 (1987).
https://doi.org/10.1029/GL014i011p01170
42.  Murphy G. B., Reasoner D. L., Tribble A., et. al. The plasma wake of the Shuttle orbiter. J. Geophys. Res., 94 (A6), 6866—6872 (1989).
https://doi.org/10.1029/JA094iA06p06866
43.  Parker L. W. Differential charging and sheath asymmetry of nonconducting spacecraft due to plasma flows. J. Geophys. Res., 83 (A10), 4873—4880 (1978).
https://doi.org/10.1029/JA083iA10p04873
44.  Pigach D. A laboratory simulation of the ionospheric plasma. AJAA Paper, No. 71-608, P. 13 (1971).
45.  Sajben M., Blumental D. Experimental study of a rarefied plasma stream and its interaction with simple bodies. AJAA Paper, N 69-79, P. 13 (1969).
46.  Samir U., Stone N. A., Wright K. H. On plasma disturbances caused by the motion of the space Shuttle and small satellite: a comparison of in situ observation. J. Geophys. Res., 91 (A1) 277—285 (1986).
https://doi.org/10.1029/JA091iA01p00277
47.  Samir V. Bodies in flowing plasma spacecraft measurements. Advance Space Res., 1 (2), 373—394 (1981).
https://doi.org/10.1016/0273-1177(81)90311-2
48.  Samir V., Gordon R., Brace L., Theis R. The near -wake structure of the Atmosphere Explorer C (AE-C) satellite: A parametric investigation. J. Geophys. Res., 84 (A2), 513—525 (1979).
https://doi.org/10.1029/JA084iA02p00513
49.  Samir V., Kaufman Y., Brace L., Brinton H. The dependence of ion density in the wake of the AE-C satellite on the radio body size to debye length in on [O+]-dominated plasma. J. Geophys. Res., 85 (A4), 1769—1772 (1980).
https://doi.org/10.1029/JA085iA04p01769
50.  Samir V., Stone N. Shuttle-era experiments in the area plasma flow interaction with body in space. Acta astronautica, 7 (10), 1091 — 1141 (1980).
https://doi.org/10.1016/0094-5765(80)90067-3
51.  Samir V., Weldman P. J., Rich F., et al. About the parametric interplay between ionic Mach number, body-size and satellite potential in determining the ion depletion in the wake of the S3-2 satellite. J. Geophys. Res., 86 (A13), 11161 — 11166 (1981).
https://doi.org/10.1029/JA086iA13p11161
52.  Scharfman W. Comparison of a modified-Langmuir probe analysis with computer solutions of electrostatic probes. Phys. Fluids, 11 (4), 689—691 (1968).
https://doi.org/10.1063/1.1691979
53.  Senbetu L., Henley J. R. Distribution of plasma density and potential around a mesothermal ionosphere object. J. Geophys. Res., 94 (A5), 5441—5448 (1989).
https://doi.org/10.1029/JA094iA05p05441
54.  Stenglass E. J. Backscattering of kilovolt electrons from solids. Phys. Review, 54 (2), 345—358 (1954).
https://doi.org/10.1103/PhysRev.95.345
55.  Wang J., Hastings D. E. Ionospheric plasma flow over large high-voltage space platforms. II: The formation and structure of plasma wake. Phys. Fluids B, 4 (6), 1615— 1629 (1992).
https://doi.org/10.1063/1.860070

56. Wang J., Lenng P., Garrett H., Murphy G. Multibody-plasma interactions: charging in the wake. J. Spacecraft and Rockets, 31 (5), 889—894 (1994).
https://doi.org/10.2514/3.26528