Seasonal changes of the activity of quasi-stationary planetary waves in the stratosphere over the Antarctic

1Grytsai, AV, 1Evtushevsky, OM
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2006, 12 ;(4):071-077
https://doi.org/10.15407/knit2006.04.071
Publication Language: Ukrainian
Abstract: 
Seasonal changes of the quasi-stationary planetary wave parameters in the Antarctic are considered, the emphasis is on the winter-spring period. Data on the total ozone content in the atmosphere (the satellite spectrometer TOMS) and lower stratosphere temperature (NCEP-NCAR) are used. On the average for 1979–2004, the maximum value of the zonal wave amplitude (80 DU) is reached in October at a latitude of 65° S. From August to November the amplitude maximum is displaced from the middle to high latitudes. Our comparison of the data for the years of an anomalous ozone hole development (1988 and 2002) shows that the wave amplitude increase in the late winter (August) is a sign of the ozone depletion decrease during spring. In August the stationary wave amplitude in the lower stratosphere temperature at the latitudes 60–65° S was about 6 К and about 10 К in 1988 and 2002, respectively. This was one of the causes of distinctions in the development of the stratospheric processes during spring.
Keywords: ozone, planetary wave, satellite spectrometer
References: 
1. Sedunov Yu. S., Avdiushin S. I., Borisenkov E. P., et al. (Eds.) Atmosphere Handbook, 510 p. (Gidrometeoizdat, Leningrad, 1991) [in Russian].
2. Grytsai A., Grytsai Z., Evtushevsky A., Milinevsky G. Interannual variability of planetary waves in the ozone layer at 65° S. Int. J. Remote Sensing, 26 (16), 3377—3387 (2005).
https://doi.org/10.1080/01431160500076350
3. Hio Y., Hirota I. Interannual variations of planetary waves in the Southern Hemisphere stratosphere. J. Met. Soc. Jap., 80 (4B), 1013—1027 (2002).
https://doi.org/10.2151/jmsj.80.1013
4. James P. M., Peters D., Waugh D. W. Very low ozone episodes due to polar vortex displacement. Tellus, 52B, 1123—1137 (2000).
https://doi.org/10.3402/tellusb.v52i4.17089
5. Joseph R., Ting M., Kushner P. J. The global stationary wave response to climate change in a coupled GCM. J. Climate, 17 (3), 540—556 (2004).
https://doi.org/10.1175/1520-0442(2004)017<0540:TGSWRT>2.0.CO;2
6. Moustaoui M., Teitelbaum H., Valero F. P. J. Vertical displacement induced by quasi-stationary waves in the Southern Hemisphere stratosphere during spring. Mon. Weather Rev., 131 (10), 2279—2289 (2003).
https://doi.org/10.1175/1520-0493(2003)131<2279:VDIBQW>2.0.CO;2
7. Newman P. A., Nash E. R. The unusual Southern Hemisphere stratosphere winter of 2002. J. Atmos. Sci., 62 (3), 614—628 (2005).
https://doi.org/10.1175/JAS-3323.1
8. Nogues-Paegle J., Mo K. C., Callahan K. P. Lower stratosphere waves during 1986-1989 Southern springs. Tellus, 44B, 390—408 (1992).
https://doi.org/10.3402/tellusb.v44i4.15465
9. Quintanar A. I., Mechoso C. R. Quasi-stationary waves in the Southern Hemisphere. Part I. Observational data. J. Climate, 8 (11), 2659—2672 (1995).
https://doi.org/10.1175/1520-0442(1995)008<2659:QSWITS>2.0.CO;2
10. Rao V. B., Fernandez J. P. R., Franchito S. H. Quasi-stationary waves in the Southern Hemisphere during El Nino and La Nina events. Ann. Geophys., 22, 789—806 (2004).
https://doi.org/10.5194/angeo-22-789-2004
11. Shindell D. T.,Wong S., Rind D. Interannual variability of the Antarctic ozone hole in a GCM. Part I. The influence of tropospheric wave variability. J. Atmos. Sci., 54 (18), 2308—2319 (1997).
https://doi.org/10.1175/1520-0469(1997)054<2308:IVOTAO>2.0.CO;2
12. Stephenson D. B., Royer J.-F. Low-frequency variability of total ozone mapping spectrometer and general circulation model total ozone stationary waves associated with the El-Niño /Southern Oscillation for the period 1979—1988. J. Geophys. Res., 100 (D4), 7337—7346 (1995).
https://doi.org/10.1029/94JD03192
13. Varotsos C. What is the lesson from the unprecedented event over Antarctica in 2002? Environ. Sci. Pollut. Res., 10 (2), 80—81 (2003).
https://doi.org/10.1007/BF02980093
14. Waugh D. W., Randel W. J. Climatology of Arctic and Antarctic vortices using elliptical diagnostics. J. Atmos. Sci., 56 (11), 1594—1613 (1999).
https://doi.org/10.1175/1520-0469(1999)056<1594:COAAAP>2.0.CO;2
15. Wirth V. Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature. J. Geophys. Res., 98 (D5), 8873—8882 (1993).
https://doi.org/10.1029/92JD02820

16. WMO: Scientific assessment of ozone depletion: 2002. Report No. 47 (World Meteorological Organization, Geneva, 2003).