Some problems in the use of fiber-optical elements in optics-electronical imaging devices of space information systems

1Parnyakov, ES, 1Mirza, MRUllah Baig
1National Aviation University, Kyiv, Ukraine
Kosm. nauka tehnol. 2006, 12 ;(4):045-051
https://doi.org/10.15407/knit2006.04.045
Publication Language: Russian
Abstract: 
The main problems of the use of fiber-optical elements in optical-electronical imaging devices of space information systems are considered. We propose to implement the space alignment of the resolution of the devices with measures of pixels of multielement photo-converters by the scaling properties of fiber-optical elements.
References: 
1. Aksenenko M. D., Baranochnikov M. L. Receivers of optical radiation. Handbook, 296 p. (Radio i Svyaz', Moscow, 1987) [in Russian].
2. Bogdanov A. A., Kuzmin V. I., Mosevnina L. G., et al. Assuring the required spectroradiometric characteristics of the Fragment multispectral system. In: Optoelectronic instruments in space experiments, 60—76 (Nauka, Moscow, 1983) [in Russian].
3. Gavrilov G. A., Sotnikova G. Ju. Correction of the frequency-contrast characteristics of photodetectors on a CCD. Tekhnika kino i televideniya, No. 3, 22—25 (1988) [in Russian].
4. Hotynyan V. S., Buinitnitskii I. O., Minkevich N. A. Experience in building a digital picture of Ukraine from high-resolution space images. Kosm. nauka tehnol., 8 (2-3), 70—72 (2002) [in Russian].
5. Zadubovskij I. I., Krasnogolovyj B. N. Image quality in electronic display devices, 208 p. (Universitetskoe, Minsk, 1990) [in Russian].
6. Kalmykov I. V., Kudryashov O. V., Lomanov V. G., et al. Transmission of analog signals over fiber optic links. Radiotekhnika, 37 (2), 52—54 (1982) [in Russian].
7. Kononov V. I. Basis of a technique for determining the resolution of aerospace systems with discrete photodetectors. Kosm. nauka tehnol., 8 (2-3), 91 — 102 (2002) [in Russian].
8. Kuzmin V. I., Mosevnina L. G., Seroshtanov V. M. System of primary transformation of optical information. MCC "Fragment". In: Optoelectronic instruments in space experiments, 55—60 (Nauka, Moscow, 1983) [in Russian].
9. Parnyakov E. S., Muhammad Rasheeq Ullah Baig Mirza. Space-time-frequency criteria of the optoelectronic autocollimation meter quality estimation. Visnyk Astron. Shkoly, 5 (1-2), 246—250 (2004) [in Russian].
10. Porkhun O. A. Application of geoinformation systems to the interpretation of aerospace images. Kosm. nauka tehnol., 8 (2-3), 106—109 (2002) [in Ukrainian].
11. Sokolsky M. N. Tolerances and Quality of the Optical Image, 221 p. (Mashinostroenie, Leningrad, 1989) [in Russian].
12. Stankevich S. A. Estimating the linear resolution of digital aerospace images. Kosm. nauka tehnol., 8 (2-3), 103—105 (2002) [in Russian].
13. Tkachenko A. P., Kirillov V. I. Television measurements techniques, 224 p. (Vysheysha shk., Minsk, 1976) [in Russian].
14. Fedorovskyi O. D., Yakimchuk V. G., Ryabokonenko S. A., et al. Interpreting space images of landscape systems on the basis of structural analysis. Kosm. nauka tehnol., 8 (2-3), 76—83 (2002) [in Russian].
15. Krivosheev M. I. (Ed.) Digital Television. (Svjaz', Moscow, 1980) [in Russian].

16. Yablonsky F. M., Troitsky Yu. V. Information Imaging Tools, 200 p. (Vysshaya shkola, Moscow, 1985) [in Russian].