New mechanism for wavy amplification and mutual transformation in the ionosphere with inhomogeneous zonal winds

1Aburjania, GD, 2Lominadze, JG, 1Khantadze, AG, 1Kharshiladze, OA
1Tbilisi State University, Tbilisi, Georgia
2Georgian Space Agency, Tbilisi, Georgia
Kosm. nauka tehnol. 2006, 12 ;(1):029-048
https://doi.org/10.15407/knit2006.01.029
Publication Language: Russian
Abstract: 
The generation and further dynamics of planetary magnetized Rossby waves and inertia waves are investigated in a rotating dissipative ionosphere in the presence of a smooth inhomo-geneous zonal wind (shear flow). Magnetized Rossby waves appear as a result of the interaction of the medium with the spatially inhomogeneous geomagnetic field and are an ionospheric manifestation of usual tropospheric Rossby waves. An effective linear mechanism responsible for the intensification and mutual transformation of Rossby and inertia waves is found. In the case of shear flows, the eigen functions of the problem are non-orthogonal and can hardly be studied by the canonical modal approach. Hence it becomes necessary to use the so-called non-modal mathematical analysis which has been actively developed in recent years. The non-modal approach shows that the transformation of wave disturbances in shear flows is due to the nonorthogonality of eigen functions of the problem in the conditions of linear dynamics. Thus there arise a new degree of freedom and a new way for the evolution of disturbances in the medium. Using the numerical modeling, we illustrate the peculiar features of the interaction of waves with the background flow, as well as the mutual transformation of wave disturbances in the D-, E- and .F-regions of the ionosphere. It is established that the presence of a geomagnetic field, Hall and Pedersen currents in the ionospheric medium improves the interaction and mutual energy exchange between waves and a shear flow.
Keywords: ionosphere, waves, zonal wind
References: 
1. Aburjania G. D., Khantadze A. G. Large-scale electromagnetic wave structures in the ionospheric E region. Geomagnetizm i Aeronomiia, 42 (2), 245—251 (2002) [in Russian].
2. Aburjania G. D., Khantadze A. G., Gvelesiani A. I. Physics of the generation of new branches of planetary electromagnetic waves in the ionosphere. Geomagnetizm i Aeronomiia, 43 (2), 193—203 (2003) [in Russian].
3. Gandin L. S., Laikhtman D. L., Matveev L. T., Yudin M. I. The fundamentals of dynamic meteorology. (Gidrometeotizdat, Leningrad, 1955) [in Russian].
4. Gershman B. N., Erukhimov L. M., and Yashin Yu. Ya. Wave Phenomena in the Ionosphere and Space Plasma, 392 p. (Nauka, Moscow, 1984) [in Russian].
5. Gill A. E. Atmosphere-Ocean Dynamics. Vols.1-2: Vol.1, 397 p. (Mir, Moscow, 1986) [in Russian].
6. Gossard E. E., Hooke W. H. Waves in the Atmosphere. (Mir, Moscow, 1975) [in Russian].
7. Dokuchaev V. P. Influence of the earth's magnetic field on the ionospheric winds. Izvestia AN SSSR. Seria Geophysica, No. 5, 783—787 (1959) [in Russian].
8. Erokhin N. S., Moiseev S. S. Wave Processes in an Inhomogeneous Plasma. In: Voprosy teorii plazmy, Is. 7, 146—204 (Atomizdat, Moscow, 1973) [in Russian].
9. Zaslavsky G. M., Sagdeev R. Z. Introduction to nonlinear physics: From pendulum to turbulence and chaos, 368 p. (Nauka, Moscow, 1988) [in Russian].
10. Kazimirovskii E. S., Kokourov V. D. Motions in the ionosphere, 344 p. (Nauka, Novosibirsk, 1979) [in Russian].
11. Kibel I. A. On the adaptation of air motion to geostrophic motion. DAN SSSR, No. 1, 104—107 (1955) [in Russian].
12. Kotkin G. L., Serbo V. G. Collection of problems in classical mechanics. (Nauka, Moscow, 1969) [in Russian].
13. Mitra S. K. The Upper Atmosphere. (Inostr. lit., Moscow, 1965) [in Russian].
14. Monin A. S. (Ed.) The physics of the ocean. T. 2. Ocean Hydrodynamics, 456 p. (Nauka, Moscow, 1978) [in Russian].
15. Nezlin M. V., Snezhkin E. N. Rossby vortices and spiral structures: Astrophysics and plasma physics in shallow water experiments, 240 p. (Nauka, Moscow, 1990) [in Russian].
16. Obukhov A. M. Toward the question of the geostrophic wind. Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz., 13 (4), 281—306 (1949) [in Russian].
17. Pedlosky J. Geophysical Fluid Dynamics. Vol. 1. (Mir, Moscow, 1984) ) [in Russian].
18. Petviashvili V. I., Pokhotelov O. A. Solitary Waves in Plasma and Atmosphere. (Energoatomizdat, Moscow, 1989) [in Russian].
19. Khantadze A. G. On Variation in the Wind Velocity and Direction in a Turbulent Conductive Ionosphere. Geomagnetizm i Aeronomiia, 8 (2), 236— 249 (1968) [in Russian].
20. Khantadze A. G. Certain Problems of the Dynamics of a Conductive Atmosphere. (Nauka, Tbilisi, 1973) [in Russian].
21. Khantadze A. G., Sharikadze D. V. On a Two Dimensional Nonstationary Wind Field in the Ionosphere. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 5 (9), 957— 960 (1969) [in Russian].
22. Holton J. R. The Dynamic Meteorology of the Stratosphere and Mesosphere. (Gidrometeoizdat, Leningrad, 1979) [in Russian].
23. Chagelishvili G. D., Chanishvili R. G., Lominadze D. G. Physics of Amplification of Turbulent Disturbances in Shear Flows. Pis’ma Zh. Eksp. Teor. Fiz., 63 (7), 517—522 (1996) [in Russian].
24. Chagelishvili G. D., Chkhetiani O. G. Linear Transformation of Rossby Waves in Shear Flows. Pis’ma Zh. Eksp. Teor. Fiz., 62 (4), 294—300 (1995) [in Russian].
25. Aburjania G. D., Chargazia Kh. Z., Khantadze A. G., Kharshiladze O. A. On the new modes of planetary-scale electromagnetic waves in the ionosphere. Ann. Geophys., 22 (4), 525—534 (2004).
https://doi.org/10.5194/angeo-22-1203-2004
26. Bromley E. N. The effects of ion drag and of plasma forces on neutral air winds in F-region. J. Atmos. Terr. Phys., 29 (10), 1317—1321 (1967).
https://doi.org/10.1016/0021-9169(67)90175-4
27. Chagelishvili G. D., Chanishvili R. G., Lominadze J. G., Tevzadze A. G. Magnetohydrodynamic waves linear evolution in parallel shear flows: amplification and mutual transformations. Phys. Plasmas, 4 (2), 259—271 (1997).
https://doi.org/10.1063/1.872120
28. Chagelishvili G. D., Rogava A. D., Segal I. N. Hydrodynamic stability of compressible plane Couette flow. Phys. Rev. E, 50 (6), 4283—4285 (1994).
https://doi.org/10.1103/PhysRevE.50.R4283
29. Chagelishvili G. D., Rogava A. D., Tsiklauri D. G. Effect coupling and linear transformation of Waves in shear flow. Phys. Rev. E, 53 (6), 6028—6031 (1996).
https://doi.org/10.1103/PhysRevE.53.6028
30. Charney T. G. On the scale of atmospheric motions. Geophys. Publ., 17 (2), 17—20 (1947).
31. Farrell B. F., Ioannou P. J. Transient development of perturbations in stratified shear flow. J. Atmos. Sci., 50 (14), 2201—2214 (1993).
https://doi.org/10.1175/1520-0469(1993)050<2201:TDOPIS>2.0.CO;2
32. Geisler J. E. A numerical study of the wind system in the middle thermosphere. J. Atmos. Terr. Phys., 29 (12), 1469—1482 (1967).
https://doi.org/10.1016/0021-9169(67)90100-6
33. Graik A. D. D., Criminale W. O. Evolution of wavelike disturbances in shear flow: a class of exact solutions of the Navier-Stokes equations. Proc. Roy. Soc. London. Ser. A, 406, 13—21 (1986).
https://doi.org/10.1098/rspa.1986.0061
34. Kalashnik M. V., Mamatsashvili G. R., Chagelishvili G. D., Lominadze J. G. Linear dynamics of non-symmetric perturbations in geostrophic horizontal shear flows. Q. J. R. Meteorol. Soc., No. 1, 1 — 17 (2004).
35. Kamide Y. Electrodynamical processes in the Earth's ionosphere and magnetosphere. (Kyoto Sangyo University Press, Kyoto, 1980).
36. Kelvin Lord (W. Thomson). Stability of fluid motion: Rectilinear motion of viscous fluid between two parallel plates. Phil. Mag., 24 (5), 188—196 (1887).
37. Landahl M. T. Wave breakdown and turbulence. SIAM J. Appl. Math., 28, 735—747 (1975).
https://doi.org/10.1137/0128061
38. Reddy S. C., Schmid P. J., Hennigson D. S. Pseudospectra of the Orr-Sommerfeld operator. SIAM. J. Appl. Math., 53, 15—23 (1993).
https://doi.org/10.1137/0153002
39. Rossby C. G. On the mutual adjustment of pressure and velocity distributions in certain simple current systems. J. Mar. Res., No. 2, 239—263 (1938).
40. Rossby C. G. On the dispersion of planetary waves in a barotropic atmosphere. Tellus, 1, 1 —11 (1949).
https://doi.org/10.3402/tellusa.v1i1.8483
41. Trefenthen L. N., Trefenthen A. E., Reddy S. C, Driscol T. A. Hydrodynamic stability without eigenvalues. Science, 261, 578—584 (1993).
https://doi.org/10.1126/science.261.5121.578

42. Volponi F., Mahajan S. M., Yoshida Z. Asymptotic analysis and renormalized perturbation theory of the non-Hermitian dynamics of an inviscid vortex. Phys. Rev. E, 64 (2), 6312—6318 (2001).
https://doi.org/10.1103/PhysRevE.64.026312