The effects of DL-threots-benzyloxy-aspartate (DL-TBOA) on the synaptosomal glutamate release in media low in [Na+ ] under artificial gravity

1Borisova, TA, 1Krisanova, NV, 2Himmelreich, NH
1Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
2O.V. Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2006, 12 ;(1):090-093
https://doi.org/10.15407/knit2006.01.090
Publication Language: Russian
Abstract: 
L-glutamate release from cytosolic pool of brain synaptosomes after exposure of rats to artificial gravity loading was investigated using the inhibitor of glutamate transport as a tool. The nontransportable competitive inhibitor DL-threo-beta-benzylo-xyaspartate (DL-TBOA) was demonstrated to become more potent in Na and NMDG-supplemented media under centrifuge-induced hypergravity. We showed that DL-TBOA inhibited L-[14 C] glutamate release effectively in NMDG-supplemented media in comparison with Na+ -supplemented one.
References: 
1. Borisova T. A., Krisanova N. V., Himmelreich N. H. Exposure of animals to artificial gravity conditions leads to the alteration of the glutamate release from rat cerebral hemispheres nerve terminals. Adv. Space Res., 33, 1362—1367 (2004).
https://doi.org/10.1016/j.asr.2003.09.039
2. Cotman C. W. Isolation of synaptosomal and synaptic plasma membrane fractions. Methods Enzymol., 31, 445—452 (1974).
https://doi.org/10.1016/0076-6879(74)31050-6
3. D'Amelio F., Fox R. A., Wu L. C., et al. Quantitative changes of GABA-immunoreactive cells in the hindlimb representation of the rat somatosensory cortex after 14-day hindlimb unloading by tail suspension. J. Neurosci Res., 44 (6), 532—539 (1996).
https://doi.org/10.1002/(SICI)1097-4547(19960615)44:6<532::AID-JNR3>3.0.CO;2-C
4. D'Amelio F., Wu L. C., Fox R. A. Hypergravity exposure decreases gamma-aminobutyric acid immunoreactivity in axon terminals contacting pyramidal cells in the rat somato­sensory cortex: a quantitative immunocytochemical image analysis. J. Neurosci Res., 15 (53), 135— 142 (1998).
https://doi.org/10.1002/(SICI)1097-4547(19980715)53:2<135::AID-JNR2>3.0.CO;2-8
5. Danbolt N. C. Glutamate uptake. Prog. Neurobiol., 65, 1 — 105 (2001).
https://doi.org/10.1016/S0301-0082(00)00067-8
6. Fox R. A. Effects of artificial gravity: central nervous system neurochemical studies. NASA Taskbook, 619—620 (1997).
7. Gegelashvili G., Schousboe A. Cellular distribution and kinetic properties of affinity glutamate transporters. Brain Res. Bull., 45 (3), 233—238 (1998).
https://doi.org/10.1016/S0361-9230(97)00417-6
8. Hughes-Fulford M. Altered cell function in microgravity. Exp. Gerontol., 26 (2-3), 247—256 (1991).
https://doi.org/10.1016/0531-5565(91)90017-G

9. Larson E., Howlett B., Jagendorf A. Artificial reductant enhancement of the Lowry method for protein determination. Analitical Biochemistry, 155, 243—248 (1986).
https://doi.org/10.1016/0003-2697(86)90432-X