The remodelling of bone tissue for low-and high-activity rats under a 45-day hypokinesy and the influence of measured oxygen deprivation

1Litovka, IG
1Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2003, 9 ;(1):092-095
https://doi.org/10.15407/knit2003.01.092
Publication Language: Ukrainian
Abstract: 
We investigate the influence of the normobaric gaz mixture with lowered P0  = 100... 110 mm Hg on the biochemical markers of the bone metabolism for rats with limited mobility. The gaz mixture with a lowered oxygen content supplied in the faltering regime activizes the rat bone tissue remodelling and hinders the development of destructive processes for young animals to a greater extent than for adult ones.
Keywords: bone tissue of rats, hypokinesia, oxygen deprivation
References: 
1. Avrunin A. S., Kornilov N. V., Sukhanov A. V., Emelianov V. G. Formation of osteoporotic changes in the structure of the bone, 68 p. (Olga, SPb., 1998) [in Russian].
2. Berezovsky V. A., Deynega V. G. Physiological mechanisms of sanogenic effects of mountain climate, 222 p. (Nauk. dumka, Kiev, 1988) [in Russian].
3. Berezovsky V. A., Levashov M. I. Physiological prerequisites and mechanisms of the normalizing effect of normobaric hypoxia and orotherapy. Fiziol. Zh., 38 (5), 3—12 (1992) [in Russian].
4. Grigor'ev A. I., Volozhin A. I., Stupakov G. P. Mineral metabolism in humans under conditions of altered gravity, 214 p. In: Problems of Space Biology, Vol. 74 (Nauka, Moscow, 1994) [in Russian].
5. Litovka I. G. Dosed hypoxia correction effect on the weightlessness osteopenia. Kosm. nauka tehnol., 8 (4), 81—85 (2002) [in Russian].
https://doi.org/10.15407/knit2002.04.081
6. Litovka I. G., Berezovska O. P. The oxygen deprivation as the osteogenesis initiator under the hypokinesia. Fiziol. zhurn., 49 (2), 58—65 (2003) [in Ukrainian].
7. Oganov V. S. Hipokinesia - the factor of risk of osteoporosis. Osteoporoz i osteopatii, No. 1, 13—17 (1988) [in Russian].
8. Prabhakar N. R. Physiological and genomic consequences of intermittent hypohia. J. Appl. Physiol., 90 (5), 1986—1994 (2001).
https://doi.org/10.1152/jappl.2001.90.5.1986
9. Premkumar D. R. Intracellular pathways linking hypoxia to activation of c-fos and AP-1. Adv. Exp. Med. Biol., No. 475, 101 — 109 (2000).
https://doi.org/10.1007/0-306-46825-5_10
10. Semenza G. HIF-1: mediator of physiological and pathophysiological responses to hipoxia. Cell, 88 (4), 1474—1480 (2000).
https://doi.org/10.1152/jappl.2000.88.4.1474

11. Wykoff C. C., Pugh C. W., Maxwell P. H., Harris A. L. Identification of novel hypoxia dependent target genes of the von Hippel-Lindau (VHL) tumor suppressor by mRNA differential expression profiling. Oncogene, No. 19, 6297—6305 (2000).
https://doi.org/10.1038/sj.onc.1204012