Prognosis of lunar surface composition from laboratory studies of lunar samples and Clementine data

1Shkuratov, Yu.G, 2Omel'chenko, VV, 2Stankevich, DG, 2Kaydash, VG, 3Pieters, P, 4Pinet, P
1Institute of Astronomy of V. N. Karazin National University of Kharkiv, Kharkiv, Ukraine; Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
2Institute of Astronomy of V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
3Brown University, Providence, USA
4University P. Sabatier, Toulouse, France
Kosm. nauka tehnol. 2003, 9 ;(1):054-070
Publication Language: Russian
A new approach to remote sensing determination of the lunar surface composition is presented. The technique is based on the Clementine UVVIS data as well as on the results of spectral and chemical/mineral studies of lunar samples by the Lunar Soil Characterization Consortium. The distributions of the main rock-forming oxides (Si02, FeO, Ti02, Al203), minerals (pyroxene, olivine, plagioclase, ilmenite), maturity degree (7s/FeO), and characteristic particle size are mapped with a resolution of 1 km. Our analysis shows that young crater regoliths are characterized by a high pyroxene content, large size of particles, and a low degree of maturity.
Keywords: lunar samples, lunar surface composition, spacecraft «Clementine»
1. Nemoshkalenko V. V.  Investigation of the lunar regolith. Kosm. nauka tehnol., 2 (1-2), 16—23 (1996) [in Ukrainian].
2. Shkuratov Iu. G. Color differences and chemical abundances in lunar soils. Astron. Vestnik, 16 (2), 69—76 (1982) [in Russian].
3. Belton M., Head J., Pieters C., et al. Lunar impact basins and crustal heterogeneity: new western limb and far side data from Galileo. Science, 255, 570—576 (1992).
4. Charette M., McCord T., Pieters C., Adams J. Application of remote spectral reflectance measurements to lunar geology classification and determination of titanium content of lunar soils. J. Geophys. Res., 79, 1605—1613 (1974).
5. Head J., Murchie S., Mustard J., et al. Lunar impact basins: New data for the western limb and farside (Orientale and South Pole — Aitken basins) from the first Galileo flyby. J. Geophys. Res., 98 (E9), 17,149—17,181 (1993).
6. Housley R., Grant R., Paton N. Origin and characteristics of excess Fe metal in lunar glass welded aggregates. In: Proc. Lunar Sci. Conf., 4th, 2737—2749 (LPI, Houston, 1973).
7. Lucey P. G., Blewett D. T., Jolliff B. L. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultra violet-visible images. J. Geophys. Res., 105 (E8), 20,297—20,306 (2000).
8. Lucey P. G., Blewett D. T., Taylor G. J., Hawke B. R. Imaging of the lunar surface maturity. J. Geophys. Res., 105 (E8), 20,377—20,386 (2000).
9. McKay D. S., Heiken G., Basu A., et al. The lunar regolith. In: Lunar source-book, 285—356 (Cambridge Univ. Press, N.Y., 1991).
10. Morris R. Origin and size distribution of metallic iron particles in the lunar regolith. In: Proc. Lunar Sci. Conf. 11-th, 1697—1712 (LPI, Houston, 1980).
11. Nozette S., Rustan P., Pleasamce L. D., et al. The Clementine mission to the Moon: Scientific overview. Science, 266, 1835—1839 (1994).
12. Omelchenko V., Shkuratov Yu., Stankevich D., et al. A comparison of two approaches using three NIR-VIS wavelengths for predicting the lunar surface composition. In: Abstracts of papers of 36-th International Microsymposium on Planetology. Abstract MS074 (Moscow, 2002).
13. Pieters C., Fischer E., Rode O., Basu A. Optical effects of space weathering: The role of the finest fraction. J. Geophys. Res., 98 (E11), 20,817—20,824 (1993).
14. Pieters C., Stade M., Fischer E., et al. A sharper view of the craters from Clementine data. Science, 266, 1844—1848 (1994).
15. Pieters C. M., Stankevich D. G., Shkuratov Yu. G., Taylor L. A. Statistical analysis of the links between lunar mare soil mineralogy, chemistry and reflectance spectra. Icarus, 155, 285—298 (2002).
16. Pinet P., Shevchenko V., Chevrel S., et al. Local and regional lunar regolith characteristics at Reiner GAMMA formation: Optical and spectroscopic properties from Clementine and Earth-based data. J. Geophys. Res., 105 (E4), 9457—9475 (2000).
17. Raitala J., Kreslavsky M., Shkuratov Yu., et al. Non-mare volcanism on the Moon: characteristics from remote sensing data. In: Lunar and Planet. Sci. 30th. Abstract 1457 (LPI, Houston, 1999).
18. Rode O. D., Ivanov A. V. Grain size of Luna-24 core samples: new data. In: Lunar Planet. Sci. Conf., 14th, 648—649 (LPI, Houston, 1983).
19. Shkuratov Yu. G., Opanasenko N. V. Polarimetric and photometric properties of the Moon: Telescope observation and laboratory simulation. 2. The positive polarization. Icarus, 99, 468—484 (1992).
20. Shkuratov Yu. G., Starukhina L. V., Kreslavsky M. A., et al. Principle of perturbation invariance in photometry of atmo-sphereless celestial bodies. Icarus, 109, 168— 190 (1994).
21. Shkuratov Yu. G., Kaydash V. G., Opanasenko N. V. Iron and titanium abundance and maturity degree distribution on lunar nearside. Icarus, 137, 222—234 (1999).

22. Taylor L. A., Pieters C. M., Morris R. V., et al. Lunar mare soils: Space weathering and the major effects of surface-correlated nanophase Fe. J. Geophys. Res., 106 (E11), 27,985—28,000 (2001).