Prognosis of lunar surface composition from laboratory studies of lunar samples and Clementine data
Heading:
1Shkuratov, Yu.G, 2Omel'chenko, VV, 2Stankevich, DG, 2Kaydash, VG, 3Pieters, P, 4Pinet, P 1Institute of Astronomy of V. N. Karazin National University of Kharkiv, Kharkiv, Ukraine; Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine 2Institute of Astronomy of V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine 3Brown University, Providence, USA 4University P. Sabatier, Toulouse, France |
Kosm. nauka tehnol. 2003, 9 ;(1):054-070 |
https://doi.org/10.15407/knit2003.01.054 |
Publication Language: Russian |
Abstract: A new approach to remote sensing determination of the lunar surface composition is presented. The technique is based on the Clementine UVVIS data as well as on the results of spectral and chemical/mineral studies of lunar samples by the Lunar Soil Characterization Consortium. The distributions of the main rock-forming oxides (Si02, FeO, Ti02, Al203), minerals (pyroxene, olivine, plagioclase, ilmenite), maturity degree (7s/FeO), and characteristic particle size are mapped with a resolution of 1 km. Our analysis shows that young crater regoliths are characterized by a high pyroxene content, large size of particles, and a low degree of maturity.
|
Keywords: lunar samples, lunar surface composition, spacecraft «Clementine» |
References:
1. Nemoshkalenko V. V. Investigation of the lunar regolith. Kosm. nauka tehnol., 2 (1-2), 16—23 (1996) [in Ukrainian].
2. Shkuratov Iu. G. Color differences and chemical abundances in lunar soils. Astron. Vestnik, 16 (2), 69—76 (1982) [in Russian].
3. Belton M., Head J., Pieters C., et al. Lunar impact basins and crustal heterogeneity: new western limb and far side data from Galileo. Science, 255, 570—576 (1992).
https://doi.org/10.1126/science.255.5044.570
https://doi.org/10.1126/science.255.5044.570
4. Charette M., McCord T., Pieters C., Adams J. Application of remote spectral reflectance measurements to lunar geology classification and determination of titanium content of lunar soils. J. Geophys. Res., 79, 1605—1613 (1974).
https://doi.org/10.1029/JB079i011p01605
https://doi.org/10.1029/JB079i011p01605
5. Head J., Murchie S., Mustard J., et al. Lunar impact basins: New data for the western limb and farside (Orientale and South Pole — Aitken basins) from the first Galileo flyby. J. Geophys. Res., 98 (E9), 17,149—17,181 (1993).
https://doi.org/10.1029/93JE01278
https://doi.org/10.1029/93JE01278
6. Housley R., Grant R., Paton N. Origin and characteristics of excess Fe metal in lunar glass welded aggregates. In: Proc. Lunar Sci. Conf., 4th, 2737—2749 (LPI, Houston, 1973).
7. Lucey P. G., Blewett D. T., Jolliff B. L. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultra violet-visible images. J. Geophys. Res., 105 (E8), 20,297—20,306 (2000).
https://doi.org/10.1029/1999JE001117
https://doi.org/10.1029/1999JE001117
8. Lucey P. G., Blewett D. T., Taylor G. J., Hawke B. R. Imaging of the lunar surface maturity. J. Geophys. Res., 105 (E8), 20,377—20,386 (2000).
https://doi.org/10.1029/1999JE001110
https://doi.org/10.1029/1999JE001110
9. McKay D. S., Heiken G., Basu A., et al. The lunar regolith. In: Lunar source-book, 285—356 (Cambridge Univ. Press, N.Y., 1991).
10. Morris R. Origin and size distribution of metallic iron particles in the lunar regolith. In: Proc. Lunar Sci. Conf. 11-th, 1697—1712 (LPI, Houston, 1980).
11. Nozette S., Rustan P., Pleasamce L. D., et al. The Clementine mission to the Moon: Scientific overview. Science, 266, 1835—1839 (1994).
https://doi.org/10.1126/science.266.5192.1835
12. Omelchenko V., Shkuratov Yu., Stankevich D., et al. A comparison of two approaches using three NIR-VIS wavelengths for predicting the lunar surface composition. In: Abstracts of papers of 36-th International Microsymposium on Planetology. Abstract MS074 (Moscow, 2002).
https://doi.org/10.1126/science.266.5192.1835
12. Omelchenko V., Shkuratov Yu., Stankevich D., et al. A comparison of two approaches using three NIR-VIS wavelengths for predicting the lunar surface composition. In: Abstracts of papers of 36-th International Microsymposium on Planetology. Abstract MS074 (Moscow, 2002).
13. Pieters C., Fischer E., Rode O., Basu A. Optical effects of space weathering: The role of the finest fraction. J. Geophys. Res., 98 (E11), 20,817—20,824 (1993).
https://doi.org/10.1029/93JE02467
https://doi.org/10.1029/93JE02467
14. Pieters C., Stade M., Fischer E., et al. A sharper view of the craters from Clementine data. Science, 266, 1844—1848 (1994).
https://doi.org/10.1126/science.266.5192.1844
https://doi.org/10.1126/science.266.5192.1844
15. Pieters C. M., Stankevich D. G., Shkuratov Yu. G., Taylor L. A. Statistical analysis of the links between lunar mare soil mineralogy, chemistry and reflectance spectra. Icarus, 155, 285—298 (2002).
https://doi.org/10.1006/icar.2001.6749
https://doi.org/10.1006/icar.2001.6749
16. Pinet P., Shevchenko V., Chevrel S., et al. Local and regional lunar regolith characteristics at Reiner GAMMA formation: Optical and spectroscopic properties from Clementine and Earth-based data. J. Geophys. Res., 105 (E4), 9457—9475 (2000).
https://doi.org/10.1029/1999JE001086
https://doi.org/10.1029/1999JE001086
17. Raitala J., Kreslavsky M., Shkuratov Yu., et al. Non-mare volcanism on the Moon: characteristics from remote sensing data. In: Lunar and Planet. Sci. 30th. Abstract 1457 (LPI, Houston, 1999).
18. Rode O. D., Ivanov A. V. Grain size of Luna-24 core samples: new data. In: Lunar Planet. Sci. Conf., 14th, 648—649 (LPI, Houston, 1983).
19. Shkuratov Yu. G., Opanasenko N. V. Polarimetric and photometric properties of the Moon: Telescope observation and laboratory simulation. 2. The positive polarization. Icarus, 99, 468—484 (1992).
https://doi.org/10.1016/0019-1035(92)90161-Y
https://doi.org/10.1016/0019-1035(92)90161-Y
20. Shkuratov Yu. G., Starukhina L. V., Kreslavsky M. A., et al. Principle of perturbation invariance in photometry of atmo-sphereless celestial bodies. Icarus, 109, 168— 190 (1994).
https://doi.org/10.1006/icar.1994.1084
https://doi.org/10.1006/icar.1994.1084
21. Shkuratov Yu. G., Kaydash V. G., Opanasenko N. V. Iron and titanium abundance and maturity degree distribution on lunar nearside. Icarus, 137, 222—234 (1999).
https://doi.org/10.1006/icar.1999.6046
https://doi.org/10.1006/icar.1999.6046
22. Taylor L. A., Pieters C. M., Morris R. V., et al. Lunar mare soils: Space weathering and the major effects of surface-correlated nanophase Fe. J. Geophys. Res., 106 (E11), 27,985—28,000 (2001).
https://doi.org/10.1029/2000JE001402