On the possibility of langmuir turbulence development at the early stage of a flare process

1Kryshtal, AN, 2Gerasimenko, SV, 1Voitsekhovska, AD, 2Soloviov, AA
1Main Astronomical Observatory of the NAS of Ukraine, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2009, 15 ;(5):59-67
https://doi.org/10.15407/knit2009.05.059
Publication Language: Russian
Abstract: 
We investigated some conditions of the appearance of high-frequency electron langmuir wave instability in a plasma near the foot-point of the loop structure at the early stage of a flare process in a solar active region (AR). The process of the instability rise and development is a result of the combined action of the following factors: the existence of a weak large-scale electric field in the loop current circuit, influence of the pair Coulomb collisions, loss of electron momentum due to the interaction with the pulsations of saturated Bernstein turbulence and Landau damping. It is assumed that near the loop footpoint, in the region of «kilogauss» magnetic fields, the plasma density and temperature are determined in the framework of the semiempirical model FAL (Fontenla-Avrett-Loeser) for solar atmosphere which takes into account the helium diffusion process. We performed the comparison of the obtained results with the analogous results derived in the framework of alternative models MAVN (Machado-Avrett-Vernazza-Noyes) and VAL (Vernazza-Avrett-Loeser) for the solar atmosphere.
Keywords: active region, langmuir wave, loop structure
References: 
1. Altyntsev A. T., Banin V. G., Kuklin G. V., Tomozov V. M. Solar Flares, 247 p. (Nauka, Moscow, 1982) [in Russian].
2. Galeev A. A., Sagdeev R. Z. Nonlinear Plasma Theory. In: Voprosy teorii plazmy, Is. 7, 3—145 (1973) [in Russian].
3. Griem H. R. Spectral line broadening by plasmas, 492 p. (Mir, Moscow, 1978) [in Russian].
4. De Jager C. Structure and dynamics of the solar atmosphere, 376 p. (Izd-vo inostr. lit., Moscow, 1962) [in Russian].
5. Zaitsev V. V., Stepanov A. V., Tsap Yu. T. On the problems of physics of solar and stellar flares. Kinematika i Fizika Nebesnykh Tel, 10 (6), 3—31 (1994) [in Russian].
6. Kryshtal A. N., Gerasimenko S. V. High-frequency Langmuir wave instability in preflare plasma. Kosm. nauka tehnol., 11 (1-2), 68—74 (2005) [in Russian].
7. Kryshtal' A. N., Gerasimenko S. V. On the sequence of the rise of plasma wave instabilities near the footpoints of solar arch structures at the early stages of a flare process. Kinematika i Fizika Nebesnykh Tel, 21 (5), 352—367 (2005) [in Russian].
8. Kryshtal A. N. Small-scale instabilities in preflare loop plasma in solar active region: Extended abstract of Doctors thesis, Main Astronomical Observatory of NAS of Ukraine, 40 p. (Kyiv, 2008) [in Ukrainian].
9. Maksimov V. P., Tomozov V. M. On possible manefestations of the turbulent Stark effect in some flare models. In: God solnechnogo maksimuma [Solar maximum year]: Proc. Intern. conf., Simferopol, March 27—31, 1981, Vol. 1, 168—177 (IZMIRAN, Moscow, 1981) [in Russian].
10. Somov B. V. Solar Flares. In: Itogi nauki i tehniki, VINITI, Astronomija, 34, 78—135 (1987) [in Russian].
11. Fontenla J. M., Avrett E. H., Loeser R. Energy balance in solar transition region. III. Helium emission in hydrostatic, constant-abundance models with diffusion. Astrophys. J., 406 (1), 319—345 (1993).
https://doi.org/10.1086/172443
12. Foukal P., Hinata S. Electric fields in the solar atmosphere: a review. Solar Phys., 132 (1), 307—330 (1991).
https://doi.org/10.1007/BF00152291
13. Harra I. K., Mathews S. A., Culhane J. L. Nonthermal velocity evolution in the precursor phase of a solar flare. Astrophys. J., 549 (2), L245— L248 (2001).
https://doi.org/10.1086/319163
14. Heyvaerts J., Priest E., Rust D. An emerging flux model for the solar flare phenomenon. Astrophys. J., 216 (1), 213—221 (1977).
https://doi.org/10.1086/155453
15. Kryshtal A. N., Kucherenko V. P. A possible excitation mechanism for a longitudinal wave instability in a plasma by a quasistatic electric field. J. Plasma Phys., 53 (pt. 2), 169—184 (1995).
https://doi.org/10.1017/S0022377800018109
16. Machado M. E., Avrett E. H., Vernazza J. E., Noyes R. W. Semiempirical models of chromospheric flare regions. Astrophys. J., 242 (1), 336—351 (1980).
https://doi.org/10.1086/158467
17. Miller I. A., Cargil P. I., Emslie A. G., et al. Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res., 102A (7), 14631—14659 (1997).
https://doi.org/10.1029/97JA00976
18. Pines D., Schrieffer J. R. Collective behavior in solid-state plasmas. Phys. Rev., 124 (5), 1387— 1400 (1961).
https://doi.org/10.1103/PhysRev.124.1387
19. Poletto G., Kopp R. A. Macroscopic electric fields during two-ribbon flares. In: The lower atmosphere of solar flares, Ed. by D. Niedeg, N 50, 453—465 (Sacramento Peak, NM, 1986).
20. Solanki S. K. Small-scale solar magnetic fields: an overview. Space Sci. Revs., 63, 1— 183 (1993).
https://doi.org/10.1007/BF00749277

21. Vernazza J. E., Avrett E. H., Loeser R. Structure of solar chromosphere. III. Models EUV brightness components of the quiet Sun. Astrophys. J. Suppl. Ser., 45, 635—725 (1981).